Math, asked by Anonymous, 1 month ago

Consider right triangle ABC, right angled at B. If AC = 17 units and BC = 8 units determine all the trigonometric ratios of angle C.

\sf \longrightarrow {Don't  \: spam}
\sf \blue{Thank  \: you!}

Answers

Answered by Anonymous
3

Given:-

In ∆ABC ,

  • AC = 17 units
  • BC = 8 units
  • right angled at \angleB

To Find:-

all the trigonometric ratios of angle C.

Solution:-

Applying Pythagoras Theorem in ∆ABC

 {(AB)}^{2}  + {(BC)}^{2}  =  {(AC)}^{2}

\sf \longrightarrow   {(AB)}^{2}   =  {(AC)}^{2} - {(BC)}^{2}

\sf \longrightarrow   AB   = \sqrt{ {(AC)}^{2} - {(BC)}^{2} }

Putting Values -

 AB   = \sqrt{ {(17)}^{2} - {(8)}^{2} }

: \implies  AB   = \sqrt{ 289 - 64}

: \implies AB   = \sqrt{ 225}

: \implies  AB   = 15 units

Now Finding ratios -

 \sin C=  \frac{P}{H}  =  \frac{AB}{AC}  = \boxed{\frac{15}{17}}

 \cos C  =  \frac{B}{H}  =  \frac{BC}{AC}  = \boxed{\frac{8}{17}}

 \tan C =  \frac{P}{B}  =  \frac{AB}{BC}  = \boxed{\frac{15}{8}}

 \cosec C=  \frac{H}{P}  =  \frac{AC}{AB}  = \boxed{\frac{17}{15} }

 \sec C=  \frac{H}{B}  =  \frac{AC}{BC}  = \boxed{\frac{17}{8} }

 \cot C =  \frac{B}{P}  =  \frac{BC}{AB}  = \boxed{\frac{8}{15}}

Where,

  • P = Perpendicular
  • B = Base
  • H = hypotenuse

and we are done :)

Similar questions