Math, asked by sujitsingh5827, 18 days ago

Consider steady-state conditions for one-dimensional conduction in a plane wall having a thermal conductivity k = 50 W/m -K and a thickness L =0.25 m, with no internal heat generation. Determine the heat flux and the unknown quantity for each case and sketch the temperature distribution, indicating the direction of the heat flux.

Answers

Answered by anbinaviyanaver
0

Step-by-step explanation:

Answer:solution:dT/dx =T2-T1/L & q_x = -k*(dT/dx)Case (1)  dT/dx= (-20-50)/0.35==> -280 K/m  q_x  =-50*(-280)*10^3==>14 kWCase (2) dT/dx= (-10+30)/0.35==> 80 K/m  q_x  =-50*(80)*10^3==>-4 kWCase (2) dT/dx= (-10+30)/0.35==> 80 K/m  q_x  =-50*(80)*10^3==>-4 kWCase (3) q_x  =-50*(160)*10^3==>-8 kWT2=T1+dT/dx*L=70+160*0.25==> 110° CCase (4) q_x  =-50*(-80)*10^3==>4 kWT1=T2-dT/dx*L=40+80*0.25==> 60° CCase (5) q_x  =-50*(200)*10^3==>-10 kWT1=T2-dT/dx*L=30-200*0.25==> -20° Cnote:all graph are attached

Similar questions