Math, asked by pawarajit315, 1 year ago

consider tbe sequence of numbers [n+√2n +1/2] for n>1 where [x] denotes the greatest integer not exceeding x. if the missing integers in the sequence are n1>n2>n3>....……. then find n12​

Answers

Answered by shadowsabers03
21

\large\textbf{\underline{\underline{Question}}}\\\\\begin{minipage}{11.4cm}\normalsize Consider the sequence of numbers $[n+\sqrt{2n}+\frac{1}{2}]$ for $n\geq1,$ where $[x]$ denotes the greatest integer not exceeding $x$. If the missing integers in the sequence are $n_1<n_2<n_3<\cdots$ then find $n_{12}.$\end{minipage}

\large\textbf{\underline{\underline{Solution:}}}\\\\\begin{minipage}{11.4cm}\normalsize On taking values for $n$, the values of $[n+\sqrt{2n}+\frac{1}{2}]$ follow the sequence:\\\\$2,\ 4,\ 5,\ 7,\ 8,\ 9,\ 11,\dots$\\\\This gives that the missing numbers are \textbf{triangular numbers}.\\\\ $n_k=\frac{k(k+1)}{2}$\\\\ Hence \ $n_{12}=\frac{12\times 13}{2}=\mathbf{78.}$\end{minipage}

Answered by ganup362
2

Answer:

my goodness only 25 points for this

Step-by-step explanation:

i won't answer you i need more marks

Similar questions