Consider the arithmetic series 4+7+10+13+16+19.... Find n such that Sn = 175
Answers
Step-by-step explanation:
Sn = 175
Sn = 175a=4
Sn = 175a=4d=7-4=3
Sn = 175a=4d=7-4=3n/2(2a+(n-1)d) =Sn
Sn = 175a=4d=7-4=3n/2(2a+(n-1)d) =Snn/2(2(4)+(n-1)3)=175
Sn = 175a=4d=7-4=3n/2(2a+(n-1)d) =Snn/2(2(4)+(n-1)3)=175n/2(8+3n-3)=175
Sn = 175a=4d=7-4=3n/2(2a+(n-1)d) =Snn/2(2(4)+(n-1)3)=175n/2(8+3n-3)=175n/2(3n+5)=175
Sn = 175a=4d=7-4=3n/2(2a+(n-1)d) =Snn/2(2(4)+(n-1)3)=175n/2(8+3n-3)=175n/2(3n+5)=1753n^2+5n/2=175
Sn = 175a=4d=7-4=3n/2(2a+(n-1)d) =Snn/2(2(4)+(n-1)3)=175n/2(8+3n-3)=175n/2(3n+5)=1753n^2+5n/2=1753n^2+5n=175×2
Sn = 175a=4d=7-4=3n/2(2a+(n-1)d) =Snn/2(2(4)+(n-1)3)=175n/2(8+3n-3)=175n/2(3n+5)=1753n^2+5n/2=1753n^2+5n=175×23n^2+5n=350
Sn = 175a=4d=7-4=3n/2(2a+(n-1)d) =Snn/2(2(4)+(n-1)3)=175n/2(8+3n-3)=175n/2(3n+5)=1753n^2+5n/2=1753n^2+5n=175×23n^2+5n=3503n^2+5n-350=0
Sn = 175a=4d=7-4=3n/2(2a+(n-1)d) =Snn/2(2(4)+(n-1)3)=175n/2(8+3n-3)=175n/2(3n+5)=1753n^2+5n/2=1753n^2+5n=175×23n^2+5n=3503n^2+5n-350=03n^2-30n+35n-350=0
Sn = 175a=4d=7-4=3n/2(2a+(n-1)d) =Snn/2(2(4)+(n-1)3)=175n/2(8+3n-3)=175n/2(3n+5)=1753n^2+5n/2=1753n^2+5n=175×23n^2+5n=3503n^2+5n-350=03n^2-30n+35n-350=03n(n-10)+35(n-10)=0
(3n+35)(n-10)=0
3n+35=0
3n=-35
n-10=0
n=10
n can't be negative