Math, asked by mysticzaii314, 3 days ago

Consider the equation of a circle x^2-2x+y^2-4y-4=0. If the line 2x-y+a=0is its diameter. Then find the value of a.

Answers

Answered by user0888
29

\large\text{Topic: [Equation of a circle]}

We know that a circle centered at \large\text{$(a,b)$} with a radius of \large\text{$r$} is -

\text{$\cdots\longrightarrow\boxed{(x-a)^{2}+(y-b)^{2}=r^{2}.}$}

\Large\text{\underline{\underline{Explanation}}}

The given circle is in the form of -

\text{$\cdots\longrightarrow\boxed{(x-1)^{2}+(y-2)^{2}=5.}$}

Hence, the circle is centered at \large\text{$(1,2)$}.

The line passes the given point.

So the linear equation has a solution pair of \large\text{$x=1,\ y=2$}.

\text{$\cdots\longrightarrow2x-y+a=0$}

\text{$\cdots\longrightarrow2\times(1)-1\times(2)+a=0$}

\text{$\cdots\longrightarrow\boxed{a=0}$}

\large\text{[Final answer]}

Hence, -

\large\text{$\cdots\longrightarrow\boxed{a=0.}$}

Similar questions