Math, asked by AestheticSky, 2 days ago

consider the following equation :-
 \\ \bullet \quad \sf {x}^{y} = {e}^{x - y} \\

– Find dy/dx at x = 1

– Find d²y/dx² at x = 1


Need a Quality Content ._.

Answers

Answered by Anonymous
216

Given-

x^y = {e}^{x - y}

Taking natural log on both sides-

 \sf log_{e} {x}^{y}  =  log_{e} {e}^{ (x - y) }

  \sf \: y  \: log \:    x = (x-y)log_e e

\quad\quad\quad\quad\quad \: \quad ( log_e e = 1)

 \sf y \:  log x = x-y

 \sf y \:  log x +y = x

 \sf y(log x + 1) = x

 \sf y =  \large{\frac{x} { log \:  x + 1}}

Differentiating Both Sides w.r.t x -

 \sf \: \frac{dy}{dx} =  \large\frac{(1+logx )\frac{dx}{dx}- x.(\frac{d(1+logx)}{dx})}{(log x +1)^2}

 \bf \quad\quad\quad\quad\quad(by  \: division \: rule \: in \: differentiation)

 \sf \frac{dy}{dx} = \large\frac{(1+log \: x ).1 - x.(0+ \frac{1}{x})}{(log \:  x +1)^2}

 \sf \frac{dy}{dx} = \large\frac{(1+log \: x ) - x.( \frac{1}{x})}{(log \:  x +1)^2}

 \sf \frac{dy}{dx} = \large\frac{\cancel1+logx  -  \cancel{1}}{(log x +1)^2}

 \boxed{ \sf \frac{dy}{dx} = \large\frac{log \: x }{(log  \: x + 1)^2}}

\underline{\underline {\bf\purple{dy/dx \: at \:x = 1\:}}}

 \rm (\frac{dy}{dx})_{x=1} =\frac{log  \: 1}{(log  \: 1+ 1)^2}\\

 \rm (\frac{dy}{dx})_{x=1} =\frac{0}{(0+ 1)^2}\\

 \rm (\frac{dy}{dx})_{x=1} =\frac{0}{( 1)^2}\\

 \red{\boxed{\rm(\frac{dy}{dx})_{x=1} =0}}\\

━━━━━━━━━━━━━━━━━━━━━━━━━━

Now,

 \rm \frac{dy}{dx}=\large\frac{log  \: x}{(log  \: x+ 1)^2}\\

Differentiating both sides w.r.t x -

 \rm \frac{d}{dx}(\frac{dy}{dx}) = \frac{d}{dx}\: [\frac{log\: x}{(log\:x+1)^2}]\\

 \rm \frac{d^2y}{dx^2} = \frac{(log\: x+1)^2.\frac{d}{dx}(log \:x)-log\:x.\frac{d}{dx}(log\:x +1)^2}{[(log\:x+1)^2]^2} \\

 \bf \quad\quad\quad\quad\quad(by  \: division \: rule \: in \: differentiation)

 \rm \frac{d^2y}{dx^2} = \frac{(log\: x+1)^2.\frac{1}{x}-log\:x. \: 2 \times (log\:x +1)^{2-1}.\frac{d}{dx}(log\:x +1)}{[(log\:x+1)^2]^2} \\

 \rm \frac{d^2y}{dx^2} = \frac{(log\: x+1)^2.\frac{1}{x}-2.log\:x.(log\:x +1).(\frac{1}{x}+0)}{[(log\:x+1)^2]^2} \\

 \rm \frac{d^2y}{dx^2} = \frac{(log\: x+1)^2.\frac{1}{x}-2.log\:x.(log\:x +1).\frac{1}{x}}{[(log\:x+1)^2]^2}\\

 \rm \frac{d^2y}{dx^2} = \frac{(\frac{log\: x +1}{x})(log\:x +1-2.log\:x)}{[(log\:x+1)^2]^2}\\

\underline{\underline {\bf\red{d^2y/dx^2 \: at \:x = 1\:}}}

 \rm (\frac{d^2y}{dx^2})_{x=1} = \frac{(\frac{log\: 1+1}{1})(log\:1 +1-2.log\:1)}{[(log\:1+1)^2]^2}\\

 \rm (\frac{d^2y}{dx^2})_{x=1} = \frac{(\frac{0+1}{1})(0 +1-2\times 0)}{[(0+1)^2]^2}\\

\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \bf(log\: 1 =0)

 \rm (\frac{d^2y}{dx^2})_{x=1} = \frac{(\frac{1}{1}).(1-0)}{(1)^4}\\

 \rm (\frac{d^2y}{dx^2})_{x=1} = \frac{1}{1} \\

 \pink{\boxed{\rm(\frac{d^2y}{dx^2})_{x=1} = 1}}\\

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Remember-

\tt log \:  {x}^{n}  = n \: log \: x

Division rule of Differentiation -

 \tt \large\frac{d}{dx} [\frac{f(x)}{g(x)} ] = \frac{g(x).f'(x) - f(x).g'(x) }{(g(x))^2}

\impliesf'(x) and g'(x) are differentiated terms

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
38

Refer the attachment for your answer (◕દ◕)

Hope it helps & my writing is easily Understandable \(^o^)/

If needed then I will write the answer in latex if writing is not understandable but I tried my best to write a writing that it will be easy to understand for you ( ꈍᴗꈍ )

Attachments:
Similar questions