Chemistry, asked by pranavchheda26, 1 month ago

consider the following reactions reaction 1: a gives b;ea=28.31kj reaction 2: c gives d;ea=20 kj if the initial temperature is 400 k for both reaction and the rate constants are equal then find the ratio of arrhenius factor a1:a2 for reaction 1 and 2​

Answers

Answered by crankybirds30
3

Answer:

Solution

The activation energy can be determined using the equation:

ln(k2/k1) = Ea/R x (1/T1 - 1/T2)

where

Ea = the activation energy of the reaction in J/mol

R = the ideal gas constant = 8.3145 J/K·mol

T1 and T2 = absolute temperatures (in Kelvin)

k1 and k2 = the reaction rate constants at T1 and T2

Answered by abhijith91622
0

Final answer:

Ratio of Arrhenius factor A_{1}:A_{2} for reaction 1 and 2 =12.1679:1

Given that: We are given, reaction:

reaction 1:  AB        E_{a_{1}} = 28.31 \frac{kJ}{mol}

reaction 2: CD       E_{a_{2}} = 20 \frac{kJ}{mol}  

Temperature both reaction T= 400 K      

To find: We have to find the ratio of Arrhenius factor A_{1}:A_{2} for reaction 1 and 2​.

Explanation:

  • The Arrhenius Equation is: k=Ae^{\frac{-E_{a}}{RT}}

Where,

T= Kelvin temperature

k = Rate constant of the reaction

A = Frequency factor or Arrhenius factor

E_{a} = Activation energy of the reaction

R = Universal gas constant = 8.314JK^{-1}mol^{-1}

  • Given reactions:

1)  AB      E_{a_{1}} = 28.31 \frac{kJ}{mol} = 28310 \frac{J}{mol}

2) CD      E_{a_{2}} = 20 \frac{kJ}{mol} = 20000\frac{J}{mol}              

  • Let A_{1}, A_{2} and k_{1}, k_{2} and E_{a_{1}},E_{a_{2}} are the Arrhenius factor, rate constant  and activation energy for reaction 1 and reaction 2 respectively.
  • Temperature both reaction T= 400 K
  • Arrhenius Equation for reaction 1:

                                       k_{1}=A_{1}\times e^\frac{-E_{a_{1}}}{RT}

  • Arrhenius Equation for reaction 2:

                                      k_{2}=A_{2}\times e^\frac{-E_{a_{2}}}{RT}

  • The rate constants are equal. (Given)

                                     k_{1}=k_{2}

                           A_{1} \times e^\frac{-E_{a_{1}}}{RT}=A_{2} \times e^\frac{-E_{a_{2}}}{RT}

                                  \frac{A_{1}}{A_{2}}= \frac{(e^{\frac{-E_{a_{2}}}{RT}})}{(e^{\frac{-E_{a_{1}}}{RT}})}

                                       = e^{\frac{-E_{a_{2}}}{RT}} \times e^{\frac{E_{a_{1}}}{RT}}

                                  \frac{A_{1}}{A_{2}}=e^{\frac{E_{a_{1}}-E_{a_{2}}}{RT}

Substitute the values of E_{a_{1}},E_{a_{2}},Rand T.

                                  \frac{A_{1}}{A_{2}}=e^{\frac{E_{a_{1}}-E_{a_{2}}}{RT}

                                       = e ^{\frac{28310-20000}{8.314\times 400}}\\\\= e ^{\frac{8310}{33256}}\\\\= e^{ 2.4988}

                                  \frac{A_{1}}{A_{2}}=12.1679

                                  A_{1}=12.1679\times A_{2}

                           A_{1}:A_{2}=12.1679:1

Hence, ratio of Arrhenius factor A_{1}:A_{2} for reaction 1 and 2 =12.1679:1

To know more about the concept please go through the links

https://brainly.in/question/12223513

https://brainly.in/question/8159696

#SPJ2

Similar questions