Math, asked by jfre6929, 2 months ago

Consider the following set of equations:

Equation C: y = 2x + 6
Equation D: y = 2x + 2

Which of the following best describes the solution to the given set of equations? (4 points)

a
No solution

b
One solution

c
Two solutions

d
Infinite solutions

Answers

Answered by sureshgowda2424
0

Answer:

\red{\maltese}\bf \: \underline{ Question} :✠

Question

:

⠀⠀⠀⠀⠀▪︎⠀Write down all the formulas of chapter MOTION ?

Answer :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Formulas related to Chapter MOTION :

\begin{gathered}\qquad\sf 1 .\: Average \:\:Speed \: \:=\: \dfrac{ Total \:Distance \:Travelled \:}{Total \:Time \:Taken \:}\\\\\end{gathered}

1.AverageSpeed=

TotalTimeTaken

TotalDistanceTravelled

\begin{gathered}\qquad\sf 2 .\: Average \:\:Velocity \: \:=\: \dfrac{ Displacement \:}{Change\:in \:Time \: \:}\\\\\end{gathered}

2.AverageVelocity=

ChangeinTime

Displacement

\begin{gathered}\qquad\sf 3 .\: Acceleration \: \:=\: \dfrac{ (v)\: Final \:Velocity \:-\:(u)\:Initial \:Velocity \:}{\:Time \: \:}\\\\\end{gathered}

3.Acceleration=

Time

(v)FinalVelocity−(u)InitialVelocity

\begin{gathered}\qquad\sf 4 .\: Momentum \:(p)\: \:=\: Mass\:(m)\: \times \:Velocity \:(v)\: \\\\\end{gathered}

4.Momentum(p)=Mass(m)×Velocity(v)

\begin{gathered}\qquad\sf 5 .\: Displacement \:\: \:=\: Final \:Position \:- \:Initial \:Position \: \\\\\end{gathered}

5.Displacement=FinalPosition−InitialPosition

⠀⠀⠀⠀⠀Now , THREE EQUATIONS of MOTION :

First Equation of Motion :

\qquad \sf \: v\:\:=\:\;u \:+\: at \:\:v=u+at

Second Equation of motion :

\qquad \sf \: v^2\:\:=\:\;u^2 \:+\: 2as \:\:v

2

=u

2

+2as

Third Equation of Motion :

\qquad \sf \: s\:\:=\:\;ut \:+\: \dfrac{1}{2}at^2 \:\:s=ut+

2

1

at

2

⠀⠀⠀⠀⠀Here , s is the Displacement, u is the Initial velocity, v is the final velocity, a is the Acceleration & T is the time of motion .

⠀⠀⠀⠀⠀Now , According to Principle of CONSERVATION of MOMENTUM :

\begin{gathered}\qquad \qquad \boxed{\qquad\underline { \bf m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2}} \\\\\end{gathered}

m

1

u

1

+m

2

u

2

=m

1

v

1

+m

2

v

2

⠀⠀⠀⠀⠀Here , \bf m_1m

1

is the mass of Object 1 , \bf m_2m

2

is the mass of Object 2 , \bf u_1u

1

is the Initial velocity of object 1 \bf u_2u

2

is the Initial velocity of object 2 , \bf v_1v

1

is the final velocity of Object 1 & \bf v_2v

2

is the Final velocity of object 2 .

Similar questions