Consider the norms ||.|| and ||.|| on R prove that .
Answers
Answered by
5
An $M\times N$ matrix ${\bf A}$ can be considered as a particular kind of vector ${\bf x}={\bf A}\in R^{m,n}$, and its norm is any function that maps ${\bf A}$ to a real number $\vert\vert{\bf A}\vert\vert$ that satisfies the following required properties:
Positivity:
\begin{displaymath}
\vert\vert{\bf A}\vert\vert\ge 0,\;\;\;\;\;\;\vert\vert{\bf A}\vert\vert=0\;\;\;\mbox{iff}\;\;\;{\bf A}={\bf0}
\end{displaymath}
Homogeneity:
\begin{displaymath}
\vert\vert a{\bf A}\vert\vert=\vert a\vert\;\vert\vert{\bf A}\vert\vert
\end{displaymath}
Triangle inequality:
\begin{displaymath}
\vert\vert{\bf A}+{\bf B}\vert\vert\le \vert\vert{\bf A}\ve...
...\vert{\bf B}\vert\vert\le \vert\vert{\bf A}-{\bf B}\vert\vert
\end{displaymath}
In addition to the three required properties for matrix norm, some of them also satisfy these additional properties not required of all matrix norms:
Subordinance:
\begin{displaymath}
\vert\vert{\bf A}{\bf x}\vert\vert\le \vert\vert{\bf A}\vert\vert \cdot \vert\vert{\bf x}\vert\vert
\end{displaymath}
Submultiplicativity:
\begin{displaymath}
\vert\vert{\bf A}{\bf B}\vert\vert\le \vert\vert{\bf A}\vert\vert \cdot \vert\vert{\bf B}\vert\vert
\end{displaymath}
We now consider some commonly used matrix norms.
Element-wise norms
If we treat the $M\times N$ elements of ${\bf A}$ are the elements of an $MN$-dimensional vector, then the p-norm of this vector can be used as the p-norm of ${\bf A}$:
Similar questions