Math, asked by Manasjain4410, 1 year ago

Consider the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. If 1 is added to each number, the variance of the numbers so obtained is

Answers

Answered by qwdonut
1

The variance of the number is 8.25

  • The given numbers are 1,2,3,4,5,6,7,8,8,10
  • If 1 is added to the numbers it will become as 2,3,4,5,6,7,8,9,10,11
  •    we know that    s^{2} = \\\frac{x_{I} ^{2}  }{n} -(∑\frac{x_{i} }{n}) ^{2}

           where s ^2 is the variance

  •         ∑x_{i} ^{2}=2^{2}+3^{2}+4^{2}+. . . . +11^{2}
  •        ∑x_{i} ^{2}=\frac{n(n+1)(2n+1)}{6}-1^{2}    

                       = 11 (12)(23)/6  - 1

                      =  506-1  =505

  •        ∑\frac{x_{i} ^{2} }{n} = \frac{505}{10}=50.5

             ∑x_{i}=2+3+4+. . .  .+11

                   = 10(2(2)+(9)(1)/2

                  = 65

  •      ∑\frac{x_{i} }{n} = 65/10 = 6.5
  •          now

                     

                    s^{2} = \\\frac{x_{I} ^{2}  }{n} -(∑\frac{x_{i} }{n}) ^{2}

                         = 50.5 - (6.5)(6.5)

                         = 50.5-42.25

                         =8.25

Similar questions