Math, asked by bb806647, 1 month ago

Consider the parabola y2

= 16x.

(i) Length of the latus rectum of the parabola is _______.

(a) 4 (b) 16 (c) 8 (d) 32 (1)

(ii) Write the co-ordinates of the focus and equation of the directrix of the above

parabola.​

Answers

Answered by 001641
0

Answer:

Given equation can be rewritten as

(x−1)

2

+(y−3)

2

=(

13

5x−12y+17

)

2

⇒SP=PM

Here, focus is (1,3), directrix

5x−12y+17=0

∴ the distance of the focus from the directrix

=

25+144

5−36+17

=

13

14

=2a

∴ Latusrectum =2×

13

14

=

13

28

Answered by amitnrw
3

Given : parabola y² = 16x

To Find : Length of the latus rectum of the parabola

(a) 4 (b) 16 (c) 8 (d) 32

the co-ordinates of the focus and equation of the directrix  

Solution:

y² = 16x     HORIZONATAL PARABOLA origin

y² = 4(4)x

Comparing with

y² = 4px   Standard equation of horizontal parabola ( origin)

p = 4

Length of Latus rectum  = 4p

= 4(4) = 16  

Length of the latus rectum of the parabola is  16

Correct option is  option b )  16

Focus = ( p , 0)   = ( 4 , 0)

Equation of the directrix

x = - p

x = - 4

or x + 4 = 0

Learn More:

नाभि के निर्देशांक, परवलय का अक्ष, नियता का समीकरण और नाभिलंब जीवा की लंबाई ज्ञात कीजिए:

brainly.in/question/15777564

नाभि के निर्देशांक, परवलय का अक्ष, नियता का समीकरण और नाभिलंब जीवा की लंबाई ज्ञात कीजिए:

brainly.in/question/15777567

Attachments:
Similar questions