Consider the quadrilateral ABCD below. What is the measure of ∠DAB of the
quadrilateral ABCD?
Attachments:
Answers
Answered by
6
Answer:
Measure of ∠DAB is 83°
Step-by-step explanation:
In Triangle ACD
∠ACD + ∠CDA + ∠DAC = 180° ( sum of all angle of triangle is 180° )
⇒ 2k - 5 + 3k + 1 + 3k = 180°
⇒ 8k -4 = 180°
⇒ 8k = 184°
∴ k = 23°
In Triangle ABC
∠BAC + ∠ACB + ∠ABC = 180° ( sum of all angle of triangle is 180° )
⇒ ∠BAC + 3k - 5 + 4k + 10 = 180°
⇒ ∠BAC + (3 × 23) - 5 + (4 × 23) + 10 = 180°
⇒ ∠BAC + 69 - 5 + 92 + 10 = 180°
⇒ ∠BAC + 166° = 180°
⇒ ∠BAC = 180° - 166°
∴ ∠BAC = 14°
Measure of ∠DAB is:
∠DAB = ∠DAC + ∠BAC
⇒ ∠DAB = 3k + 14°
⇒ ∠DAB = (3 × 23) + 14
⇒ ∠DAB = 69° + 14°
∴ ∠DAB = 83°
Similar questions