Math, asked by diya897, 3 months ago


. Consider the real function f(x) =x+2/x-2
a) Find the domain and range of the function.
b) Prove that f(x). f (-x) + f (0) = 0​

Answers

Answered by Asterinn
29

a) Find the domain and range of the function.

First we will find domain of the given function :-

 \rm \: f(x) =  \dfrac{x + 2}{x - 2}

 \rm x - 2 \neq \: 0   \\ \rm x\neq2

[ This means that the value of x can be any real number except 2. ]

 \rm  \therefore D_f   = x\in R - \{2 \} \\  \\  \rm( \: D_f = domain \: of \: the \: given \: function)

R = real numbers

Now , we will find range of the function :-

Let f(x) be y

\rm \: f(x) =  \dfrac{x + 2}{x - 2}  \\  \\ \rm y=  \dfrac{x + 2}{x - 2}

\rm  \rightarrow y({x - 2} )= {x + 2} \\  \\ \rm \rightarrow yx - 2y= {x + 2}\\  \\ \rm \rightarrow yx  - x= {  2} + 2y\\  \\ \rm \rightarrow (y - 1)x= {  2} + 2y\\  \\ \rm \rightarrow x=  \dfrac{{  2} + 2y}{y - 1}

\rm y - 1 \neq \: 0   \\  \\ \rm y  \neq \: 1 \\  \\ \rm R_f = y \in R - \{1 \} \\  \\ \rm R_f =range \: of \: the \: given \: function

[ This means that the value of y can be any real number except 1. ]

b) Prove that f(x). f (-x) + f (0) = 0

\rm \rightarrow f(x) =  \dfrac{x + 2}{x - 2}

\rm \: f( - x) =  \dfrac{ - x + 2}{ - x - 2}  \\  \\ \rm \rightarrow f( - x) =  \dfrac{x  -  2}{x + 2}

\rm \: f(0) =  \dfrac{0 + 2}{0 - 2} \\   \\ \rm f(0) =  \dfrac{ 2}{ - 2}  \\ \\  \rm \rightarrow f(0) =   - 1

 \rm \longrightarrow f(x). f (-x) + f (0) = 0

 \rm \longrightarrow \bigg(\dfrac{x + 2}{x - 2}   \times \dfrac{x  -  2}{x  +  2}   \bigg) + ( - 1) \\  \\ \rm \longrightarrow 1 - 1 = 0

Hence proved


shadowsabers03: Awesome!
Asterinn: Thank you! :)
Atαrαh: Amazingg :3
Asterinn: Thank you!
Answered by Anonymous
2

Given= Consider the real function f(x) =x+2/x-2

Solution:

Consider the function, f(x) = |x - 2| + |x - 5|, x ∈ R. Statement I f'(4) = 0 Statement II f is continuous in [2, 5], differentiable in (2, 5) and f(2) = f(5). (a) Statement I is false, Statement II is true (b) Statement II is true, Statement II is true; Statement II is a correct explanation of Statement I (c) Statement I is true, Statement II is true; Statement II is not a correct explanation of Statement I (d) Statement I is true, Statement II is false

Given= Find the domain and range of the function.

Solution:

The domain of a function is the set of all possible inputs for the function. For example, the domain of f(x)=x² is all real numbers, and the domain of g(x)=1/x is all real numbers except for x=0. We can also define special functions whose domains are more limited.

The domain of a function is the set of all acceptable input values (X-values). The range of a function is the set of all output values (Y-values).

Question= Prove that f(x). f (-x) + f (0) = 0

Solution is given in above pic⤴️

Attachments:
Similar questions