Math, asked by anuroy470, 1 year ago

Consider the vectors u = (1, 2,-1) and v = (6, 4, 2) in r3. Show that w = (9, 2, 7) is a linear combination of u and v and that w= (4,-1, 8) is not a linear combination of u and v

Answers

Answered by dhananjay721
6
Hope it helps you, if not please tell us.

Thank you!
Attachments:
Answered by dikshaagarwal4442
3

Answer:

1) w = (9, 2, 7) = -3u + 2v i.e. w is a linear combination of u and v.

2) w= (4,-1, 8) ≠ -5u + 3/2v i.e. w is not linear combination of u and v.

Step-by-step explanation:

Given u = (1, 2,-1) and v = (6, 4, 2)

Case-1: If w = (9, 2, 7) is a linear combination of u and v, then we can

             write, w = (9, 2, 7) = αu + βv        [ α and β are constants]

                     (9, 2, 7) = α(1, 2,-1) + β(6, 4, 2)  [putting values of u and v]

                     (9, 2, 7) = (α, 2α,-α) + (6β, 4β, 2β)  

                     (9, 2, 7) = (α + 6β, 2α + 4β,-α +2β ) ............(1)

 Comparing the two sides ,  α + 6β = 9.......(2)

                                               2α + 4β = 2 or, α + 2β = 1 .......(3)

                                                -α +2β = 7..........(4)

Subtracting equation (3) from (2),   (α + 6β) - (α + 2β) = 9 - 1

                                                     ⇒  6β - 2β = 8       ⇒ β = 2

 From equation (2), α = 9 - 6β = 9 - 6(2) = -3     ⇒ α = -3

 Putting the values of α and β in right hand side of equation (1),

    (α + 6β, 2α + 4β,-α +2β ) = ( -3 + 6x2, 2x(-3) + 4x2, 3 + 2x2)

                                             = (9, 2, 7) = w

    ∴ w is linear combination of u and v, w = -3u + 2v

Case-2: If w = (4,-1, 8)) is a linear combination of u and v, then we can

             write, w = (4,-1, 8) = αu + βv        [ α and β are constants]

                    (4,-1, 8) = α(1, 2,-1) + β(6, 4, 2)  [putting values of u and v]

                    (4,-1, 8) = (α, 2α,-α) + (6β, 4β, 2β)  

                    (4,-1, 8) = (α + 6β, 2α + 4β,-α +2β ) ............(1)

 Comparing the two sides ,  α + 6β = 4.......(2)

                                               2α + 4β = -1 or, α + 2β = 1 .......(3)

                                                -α +2β = 8..........(4)

Adding equation (2) and (4),   (α + 6β) + (-α + 2β) = 4 + 8

                                                     ⇒  6β + 2β = 12       ⇒ β = 3/2

 From equation (2), α = 4 - 6β = 4 - 6(3/2) = -5     ⇒ α = -5

 Putting the values of α and β in right hand side of equation (1),

    (α + 6β, 2α + 4β,-α +2β ) = ( -5 + 6x3/2, 2x(-5) + 4x3/2, 5 + 2x3/2)

                                             = (4, -4, 8) ≠ w

                ∴ w -5u + 3/2v

    ∴ w is not linear combination of u and v.

Similar questions