Math, asked by Anonymous, 1 day ago

Consider three equations of line:
lx + my + n = 0
mx + ny + l = 0
nx + ly + m = 0

These three lines are concurrent when?

Options are:-
[A] l + m - n = 0
[B] l + m + n = 0
[C] l - m - n = 0
[D] l - m + n = 0

Answer along with explanation.

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given equation of lines are

\rm \: lx + my + n = 0 -  -  - (1) \\

\rm \: mx + ny + l = 0 -  -  - (2) \\

\rm \: nx + ly + m = 0 -  -  - (3) \\

We know, three lines

ax + by + c = 0

dx + ey + f = 0

gx + hy + i = 0 are concurrent iff

\rm \: \:  \begin{gathered}\sf \left | \begin{array}{ccc}a&b&c\\d&e&f\\g&h& i\end{array}\right | \end{gathered} \: =  \: 0 \\

So, using this concept, we have

\rm \: \:  \begin{gathered}\sf \left | \begin{array}{ccc}l&m&n\\m&n&l\\n&l& m\end{array}\right | \end{gathered} \: =  \: 0 \\

 \:  \:  \:  \:  \:  \: \boxed{\tt{  \:  \:  \:  \:  \:  \: OP \: R_1 \:  \to \: R_1 + R_2 + R_3 \:  \:  \:  \:  \: }} \\

\rm \: \:  \begin{gathered}\sf \left | \begin{array}{ccc}l + m + n&l +  m + n&l + m + n\\m&n&l\\n&l& m\end{array}\right | \end{gathered} \: =  \: 0 \\

Take out l + m + n common from first row.

\rm \: \:(l + m + n)  \begin{gathered}\sf \left | \begin{array}{ccc}1&1&1\\m&n&l\\n&l& m\end{array}\right | \end{gathered} \: =  \: 0 \\

\rm\implies \: \: \:l + m + n = 0 \:  \: or \:  \begin{gathered}\sf \left | \begin{array}{ccc}1&1&1\\m&n&l\\n&l& m\end{array}\right | \end{gathered} \: =  \: 0 \\

So, Option [B] is correct.

Consider,

\rm \:  \:  \begin{gathered}\sf \left | \begin{array}{ccc}1&1&1\\m&n&l\\n&l& m\end{array}\right | \end{gathered} \: =  \: 0 \\

 \:  \:  \:  \:  \:  \: \boxed{\tt{  \:  \:  \:  \:  \:  \: OP \: C_2 \:  \to \: C_2 - C_1 \:  \:  \:  \:  \: }} \\

\rm \:  \:  \begin{gathered}\sf \left | \begin{array}{ccc}1&0&1\\m&n - m&l\\n&l - n& m\end{array}\right | \end{gathered} \: =  \: 0 \\

 \:  \:  \:  \:  \:  \: \boxed{\tt{  \:  \:  \:  \:  \:  \: OP \: C_3 \:  \to \: C_ 3- C_1 \:  \:  \:  \:  \: }} \\

\rm \:  \:  \begin{gathered}\sf \left | \begin{array}{ccc}1&0&0\\m&n - m&l - m\\n&l - n& m - n\end{array}\right | \end{gathered} \: =  \: 0 \\

On expanding along Row 1, we get

\rm \: (n - m)(m - n) - (l - m)(l - n) = 0 \\

\rm \:  -  {(n - m)}^{2} - ( {l}^{2} - ln - lm + mn) = 0 \\

\rm \:  {(n - m)}^{2} + ( {l}^{2} - ln - lm + mn) = 0 \\

\rm \:   {n}^{2}  + {m}^{2} - 2mn  + {l}^{2} - ln - lm + mn = 0 \\

\rm \:   {n}^{2}  + {m}^{2} + {l}^{2} - ln - lm  -  mn = 0 \\

\rm \:   2({n}^{2}  + {m}^{2} + {l}^{2} - ln - lm  -  mn) = 0 \\

\rm \:   2{n}^{2}  +2 {m}^{2} + 2{l}^{2} -2 ln - 2lm  -  2mn = 0 \\

\rm \:    {n}^{2}  + {n}^{2}  + {m}^{2} +  {m}^{2} +  {l}^{2} +  {l}^{2} -2 ln - 2lm  -  2mn = 0 \\

\rm \:  {(l - n)}^{2} +  {(m - n)}^{2} +  {(m - l)}^{2}  = 0 \\

We know, sum of squares is 0 only, when term itself is 0

\rm\implies \:l - n = 0 \:  \: and \:  \: n - m = 0 \:  \: and \:  \: m - n = 0

\rm\implies \:l  = n \:  \: and \:  \: n  = m\:  \: and \:  \: m  = n \\

\rm\implies \:l  = n  = m \\

So, we concluded that

\rm\implies \:\boxed{\tt{  \:  \: l + m + n = 0 \:  \: }} \\

Hence, Option [ B ] is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Different forms of equations of a straight line

1. Equations of horizontal and vertical lines

Equation of line parallel to x - axis passes through the point (a, b) is y = b.

Equation of line parallel to y - axis passes through the point (a, b) is x = a.

2. Point-slope form equation of line

Equation of line passing through the point (a, b) having slope m is y - b = m(x - a)

3. Slope-intercept form equation of line

Equation of line which makes an intercept of c units on y axis and having slope m is y = mx + c.

4. Intercept Form of Line

Equation of line which makes an intercept of a and b units on x - axis and y - axis respectively is x/a + y/b = 1.

5. Normal form of Line

Equation of line which is at a distance of p units from the origin and perpendicular makes an angle β with the positive X-axis is x cosβ + y sinβ = p.

Similar questions