Math, asked by manojagrahari523, 1 year ago

Consider Z7 =[0,1,2,3......6+7,*7], show that Z7 is a field.

Answers

Answered by knjroopa
8

Answer:

proved

Step-by-step explanation:

Given Consider Z7 =[0,1,2,3......6+7,*7], show that Z7 is a field.

We know addition modulo 7. We can write it as

+7    0  1  2  3  4  5  6  

  0    0  1  2   3  4  5  6

  1   1   2   3   4  5  6  0

  2   2   3   4    5  6  0  1

  3    3   4   5   6   0  1  2

  4    4   5   6    0   1  2  3

  5   5   6   0    1   2   3   4

 6   6   0    1    2   3   4    5

So Z is closed under +7 . Now this modulo is associative.  So we can see inverse of 1 is 6.  

 The additive identity is 0.

Here if a, b belongs to Z7 , a+7 b = b +7 a for all a,b belongs to Z7

Therefore Z7 is an additive group with respect to +7.

Now consider multiplication modulo 7

 X7  0   1   2   3   4   5   6

  0   0    0    0   0   0   0   0

  1    0   1    2   3   4   5    6

  2    0    2    4   6   1    3   5

  3    0    3    6    2    5    1 4

  4    0    4     1    5   2    6   3

  5    0    5     3     1   6    4   2

  6    0     6     5     4   3    2   1

So Z7 is closed with respect to x7

  a, b belongs to Z7 implies a x7 b belongs to Z for all a, b belongs to Z

 Now we have a, b, c belongs to Z7,

 a x7 (b +7 c) = a x7 b +=7 a x x7c

 (a +7 b) x7 c = a x7 c +7b x7 c is true for all a,b,c belongs to Z7

We know that 1 is multiplicative identity of Z7.

Each non-zero element of Z7 has a multiplicative inverse. So the numbers of Z7 are 1,2,3,4,5,6. These elements are prime to 7.

Therefore Z7 is a field.  

Answered by abipadhu2014
1

Answer:

digit 7 multiplication modulo answer

Similar questions