Math, asked by shahinachai10, 1 month ago

construct 3× 2 matrix whose elements are gives by aij= 1/2 |i- 3j|?​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Let us assume a matrix of order 3 × 2 as

\rm :\longmapsto\:A = \begin{gathered}\sf \:\left[\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\\a_{31}&a_{32}\end{array}\right]\end{gathered}

Now, it is given that

 \red{\bf :\longmapsto\:a_{ij} = \dfrac{1}{2} |i - 3j| \:  \: }

So,

 \red{\bf :\longmapsto\:a_{11} = \dfrac{1}{2} |1 - 3|  = \dfrac{1}{2} | - 2| = 1  \:  \: }

 \red{\bf :\longmapsto\:a_{12} = \dfrac{1}{2} |1 - 6|  = \dfrac{1}{2} | - 5| =  \dfrac{5}{2}  \:  \: }

 \red{\bf :\longmapsto\:a_{21} = \dfrac{1}{2} |2 - 3|  = \dfrac{1}{2} | - 1| =   \dfrac{1}{2}  \:  \: }

 \red{\bf :\longmapsto\:a_{22} = \dfrac{1}{2} |2 - 6|  = \dfrac{1}{2} | - 4| =   2\:  \: }

 \red{\bf :\longmapsto\:a_{31} = \dfrac{1}{2} |3 - 3|  = \dfrac{1}{2} |0| =   0  \:  \: }

 \red{\bf :\longmapsto\:a_{32} = \dfrac{1}{2} |3 - 6|  = \dfrac{1}{2} | - 3| =    \dfrac{3}{2}  \:  \: }

So, on substituting the values, we get

\rm :\longmapsto\:A = \begin{gathered}\sf \:\left[\begin{array}{cc}1&\dfrac{5}{2}  \\ \\\dfrac{1}{2} &2  \\ \\ 0&\dfrac{3}{2} \end{array}\right]\end{gathered}

Additional Information :-

1. Order of a matrix is defined as number of rows × number of columns .

2. Order give the following information :

(a). Number of elements in given matrix.

(b). Number of elements in each row

(c). Number of elements in each column

Similar questions