Math, asked by rathikart18, 1 month ago

construct a 3×2 matria whose elements are given by aij=|i-2j|÷2​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Let us assume a matrix of 3 × 2 order as

</p><p>\begin{gathered}\rm :\longmapsto\:A = \begin{gathered}\sf \:\left[\begin{array}{cc}a_{11}&amp;a_{12}\\a_{21}&amp;a_{22}\\a_{31}&amp;a_{32}\end{array}\right]\end{gathered}\end{gathered}

It is given that

 \red{\sf :\longmapsto\:a_{ij} = \dfrac{1}{2} |i - 2j| }

Now,

 \red{\sf :\longmapsto\:a_{11} = \dfrac{1}{2} |1 - 2|  = \dfrac{1}{2} | - 1|   = \dfrac{1}{2} }

 \red{\sf :\longmapsto\:a_{12} = \dfrac{1}{2} |1 - 4|  = \dfrac{1}{2} | - 3|   = \dfrac{3}{2} }

 \red{\sf :\longmapsto\:a_{21} = \dfrac{1}{2} |2 - 2|  = \dfrac{1}{2} |0|   = 0}

 \red{\sf :\longmapsto\:a_{22} = \dfrac{1}{2} |2 - 4|  = \dfrac{1}{2} | - 2|   = 1}

 \red{\sf :\longmapsto\:a_{31} = \dfrac{1}{2} |3 - 2|  = \dfrac{1}{2} |1|   = \dfrac{1}{2} }

 \red{\sf :\longmapsto\:a_{32} = \dfrac{1}{2} |3 - 4|  = \dfrac{1}{2} | - 1|   = \dfrac{1}{2} }

Thus,

</p><p> \purple{\begin{gathered}\rm :\longmapsto\:A = \begin{gathered}\sf \:\left[\begin{array}{cc}\dfrac{1}{2} &amp;\dfrac{3}{2}  \\  \\ 0&amp;1 \\ \\\dfrac{1}{2} &amp;\dfrac{1}{2} \end{array}\right]\end{gathered}\end{gathered}}

More to know :-

1. Order of a matrix is defined as number of rows × number of columns.

2. Order of a matrix provides the following information :-

(a). Number of elements in a matrix.

(b). Number of elements in each row.

(c). Number of elements in each column.

Similar questions