Math, asked by IankittripathiI, 2 months ago

Construct a
∆ ABC, in which
ZB = 60°.
ZC = 45°
and AB + BC + CA = 11 cm.
Give
justification
also
━━━━━━━━━━━━━━━━━━━​

Answers

Answered by Salmonpanna2022
45

Answer:

Q). Construct a triangle ABC in which B = 60°,C = 45° and AB+BC+CA=11cm.

Solution:

Given ∠B=60°,∠C=45° and AB+BC+CA=11cm

Let's construct ∆ABC.

Step to construction:

Draw a line segment XY equal to AB+AC+BC=11cm.

②Make angle equal to ∠B=60° from point X

Let the angle be ∠LXY.

③Make angle equal to ∠C=45° from point Y

Let the angle be ∠MYX.

④Bisect ∠LXY and ∠MYX.

Let these bisectors intersect at a point A.

⑤Make perpendicular bisector of AX

Let it intersect XY at point B

⑥Make perpendicular bisector of AY

Let it intersect XY point C

⑦Join AB & AC.

∴∆ABC is the required triangle.

Attachments:
Answered by Evilhalt
1359

Given, in ABC,

 \rm \footnotesize{ \implies \:  \angle \: B \:  = 60  \degree} \\ \rm \footnotesize{ \implies \:  \angle C \: = 45  \degree}

\rm \footnotesize{ \implies \: AB  + BC +  CA = 11 \: cm}

\mathbb \purple{ STEPS \:  \:  OF \:  \:  CONSTRUCTION}

  \rm \footnotesize \bold{(step - 1)}\rm \footnotesize{Draw \:  a  \: line  \: segment  \: PQ = 11 cm}

  \rm \footnotesize \bold{(step - 2)}\rm \footnotesize{Draw \:  ray \: PL  \: making \:  an  \:  \angle \: LPQ  \: 60 \degree at \:  P} \\  \rm \footnotesize{and \:  ray \:  QM  \: making  \: an \:   \angle \: MQP = 45 \degree \:  at  \: Q}

  \rm \footnotesize \bold{(step - 3)}\rm \footnotesize{Bisect \:  the  \:  \angle \: LPQ \:  and \:   \angle \: MQP, \:  let  \: the} \\  \rm \footnotesize{intersection \:  point  \: of \:  these \:  Bisectors \:  be \:  A \: }

  \rm \footnotesize \bold{(step - 4)}\rm \footnotesize{Draw \:  the \:   \bot \:  of  \: ED  \: of \: AP \: intersect \: PQ  \: at \:  \:  B}

  \rm \footnotesize \bold{(step - 5)}\rm \footnotesize{Draw \:  another  \:  \bot \: FG \:  of  \: AQ  \: which \:  intersect  \: PQ \:  at \:  C}

  \rm \footnotesize \bold{(step - 6)}\rm \footnotesize{Join \:  AB \:  and  \: AC, \:  Thus  \: ABC \:  is  \: a  \: required \:   \triangle}

 \mathbb \purple{JUSTIFICATION}

Since, B lies on the perpendicular Bisector ED of AP.

 \rm \small{so \: AB  = BP \:   \: then,  \angle \: ABP =  \angle \:  PAB}

Similarly, C lies on the perpendicular Bisector FG of AQ.

 \rm \small{ \therefore \: AC =  CQ  \: then, \:  \angle \:  AQC =  \angle \:  QAC}

  \rm \small{ Now,. BC  + CA  + AB = BC +  CQ   + BP = PQ}

 \rm \small{ \angle \: ABC  =  \angle \: APB +  \angle \: PAB = 2( \angle \: APB)}

 \rm \small{ \implies \:  \angle \: LPQ = 60 \degree}

 \rm \small{Similarly \:  \angle ACB   =   \angle \: AQC +  \angle QAC}

 \rm \small{ \implies \: 2( \angle \: AQC)}

 \rm \small{ \implies \:  \angle \: MQP = 45 \degree}

Thus, the construction is justified.

 \tiny  \rm{hope \: it \: helps \: uhh}

Attachments:
Similar questions