Chemistry, asked by haneenahadi123, 4 months ago

construct a galvanic cell of zn–cu write the equation of redox reaction taking place in the cell ?​

Answers

Answered by adrijapal993
1

Answer:

Explanation:

In any electrochemical process, electrons flow from one chemical substance to another, driven by an oxidation–reduction (redox) reaction. A redox reaction occurs when electrons are transferred from a substance that is oxidized to one that is being reduced. The reductant is the substance that loses electrons and is oxidized in the process; the oxidant is the species that gains electrons and is reduced in the process. The associated potential energy is determined by the potential difference between the valence electrons in atoms of different elements.

Because it is impossible to have a reduction without an oxidation and vice versa, a redox reaction can be described as two half-reactions, one representing the oxidation process and one the reduction process. For the reaction of zinc with bromine, the overall chemical reaction is as follows:

Zn(s)+Br2(aq)→Zn2+(aq)+2Br−(aq)(1.1.1)

The half-reactions are as follows:

reduction half-reaction:

Br2(aq)+2e−→2Br−(aq)(1.1.2)

oxidation half-reaction:

Zn(s)→Zn2+(aq)+2e−(1.1.3)

Each half-reaction is written to show what is actually occurring in the system; Zn is the reductant in this reaction (it loses electrons), and Br2 is the oxidant (it gains electrons). Adding the two half-reactions gives the overall chemical reaction (Equation 1.1.1). A redox reaction is balanced when the number of electrons lost by the reductant equals the number of electrons gained by the oxidant. Like any balanced chemical equation, the overall process is electrically neutral; that is, the net charge is the same on both sides of the equation.

In any redox reaction, the number of electrons lost by the reductant equals the number of electrons gained by the oxidant.

In most of our discussions of chemical reactions, we have assumed that the reactants are in intimate physical contact with one another. Acid–base reactions, for example, are usually carried out with the acid and the base dispersed in a single phase, such as a liquid solution. With redox reactions, however, it is possible to physically separate the oxidation and reduction half-reactions in space, as long as there is a complete circuit, including an external electrical connection, such as a wire, between the two half-reactions. As the reaction progresses, the electrons flow from the reductant to the oxidant over this electrical connection, producing an electric current that can be used to do work. An apparatus that is used to generate electricity from a spontaneous redox reaction or, conversely, that uses electricity to drive a nonspontaneous redox reaction is called an electrochemical cell.

Similar questions