Math, asked by ananyamergu0511, 2 months ago

construct a matrix A=[aij]2×3 whose element aij is given by aij=i2+j2/2​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Let us consider a matrix of order 2 × 3 as

\begin{gathered}\sf \rm :\longmapsto\:\:A=\left[\begin{array}{ccc}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\end{array}\right]\end{gathered}

Now, it is given that

\bf :\longmapsto\:a_{ij} \:  =  \: \dfrac{ {i}^{2}  +  {j}^{2} }{2}

So,

\bf :\longmapsto\:a_{11} \:  =  \: \dfrac{ {1}^{2}  +  {1}^{2} }{2}  = 1

\bf :\longmapsto\:a_{12} \:  =  \: \dfrac{ {1}^{2}  +  {2}^{2} }{2}  =  \dfrac{1 + 4}{2} =  \dfrac{5}{2}

\bf :\longmapsto\:a_{13} \:  =  \: \dfrac{ {1}^{2}  +  {3}^{2} }{2}  =  \dfrac{1 + 9}{2} =  \dfrac{10}{2}  = 5

\bf :\longmapsto\:a_{21} \:  =  \: \dfrac{ {2}^{2}  +  {1}^{2} }{2}  =  \dfrac{4 + 1}{2} =  \dfrac{5}{2}

\bf :\longmapsto\:a_{22} \:  =  \: \dfrac{ {2}^{2}  +  {2}^{2} }{2}  =  \dfrac{4 + 4}{2} =  \dfrac{8}{2}  = 4

\bf :\longmapsto\:a_{23} \:  =  \: \dfrac{ {2}^{2}  +  {3}^{2} }{2}  =  \dfrac{4 + 9}{2} =  \dfrac{13}{2}

Hence, on substituting all these values in above matrix, we get

\begin{gathered}\sf \bf\implies \:\:A=\left[\begin{array}{ccc}1&\dfrac{5}{2} &5 \\ \\\dfrac{5}{2} &4&\dfrac{13}{2} \end{array}\right]\end{gathered}

Similar questions