Math, asked by jainanshika2707, 2 months ago

construct a polynomial whose one zero is √2 +1 and whose product of zeros is 1

Answers

Answered by mathdude500
7

\tt \:  Let \: zeroes \: of \: polynomial \: be \:  \alpha  \: and \:  \beta .

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{ \alpha  =  \sqrt{2}  + 1} \\ &\sf{ \alpha  \beta  = 1} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{a \: quadratic \: polynomial}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

★ Given

 : \implies \tt \:  \alpha  =  \sqrt{2}  + 1 \\  : \implies \tt \:  \alpha  \beta  \:  = 1 \:  \:  \:  \:  \:  \:  \:  \:  \\

 : \implies \tt \:  \beta  \:  =  \: \dfrac{1}{ \alpha }

 : \implies \tt \:  \beta  \:  = \dfrac{1}{ \sqrt{2}  + 1 }

 : \implies \tt \:  \beta  = \dfrac{1}{ \sqrt{2} + 1 }  \times \dfrac{ \sqrt{2}  - 1}{ \sqrt{2}  - 1}

 : \implies \tt \:  \beta  = \dfrac{ \sqrt{2}  - 1}{ { (\sqrt{2}) }^{2}  -  {1}^{2} }

 : \implies \tt \:  \beta  = \dfrac{ \sqrt{2}  - 1}{2 - 1}

 : \implies \tt \:  \beta  =  \sqrt{2}  - 1

★ Now,

\tt \:Sum  \: of \:  zeros \:  =  \alpha  +  \beta  =  \sqrt{2}  + 1 +  \sqrt{2 }  - 1

 : \implies \tt \:  \alpha  +  \beta  = 2 \sqrt{2}

★ So, we have now

 : \implies \tt \:  \alpha  +  \beta  = 2 \sqrt{2}  \\  \bf \: and \\  : \implies \tt \:  \:  \alpha   \: \beta \:   =  \: 1 \:  \:  \:  \:  \:  \:  \:  \:

★ Now, we know that quadratic polynomial is given by

: \implies \tt \: f(x) = k \bigg(  {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \beta  \bigg)

★ where k is non zero real number.

: \implies \tt \: f(x) = k \bigg(  {x}^{2} -  2 \sqrt{2}   \: x   + 1  \bigg)

Similar questions