Math, asked by deepakzym7035, 21 days ago

construct a shmbhu ABCD in which AB=7.4cm,LB=72°​

Answers

Answered by rohitsingh9014
0

Step-by-step explanation:

it will help you to understand

Attachments:
Answered by Anonymous
0

Answer:

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1) \\

Step-by-step explanation:

Given :

\displaystyle \sf t=\sqrt{y}+1 \\ \\

Rewrite as :

\displaystyle \sf \longrightarrow t-1=\sqrt{y} \\ \\

\displaystyle \sf \longrightarrow y= (t-1)^2 \\ \\

Now diff. w.r.t. t we get :

\displaystyle \sf \longrightarrow \frac{dy}{dt} =\frac{d}{dt} (t-1)^2 \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1)^{2-1}.(t-1)' \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1).(t'-1') \\ \\

We know derivative of constant is zero!

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1).(1-0) \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1) \\ \\

Hence we get required answer!

Answered by Anonymous
0

Answer:

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1) \\

Step-by-step explanation:

Given :

\displaystyle \sf t=\sqrt{y}+1 \\ \\

Rewrite as :

\displaystyle \sf \longrightarrow t-1=\sqrt{y} \\ \\

\displaystyle \sf \longrightarrow y= (t-1)^2 \\ \\

Now diff. w.r.t. t we get :

\displaystyle \sf \longrightarrow \frac{dy}{dt} =\frac{d}{dt} (t-1)^2 \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1)^{2-1}.(t-1)' \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1).(t'-1') \\ \\

We know derivative of constant is zero!

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1).(1-0) \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1) \\ \\

Hence we get required answer!

Answered by Anonymous
0

Answer:

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1) \\

Step-by-step explanation:

Given :

\displaystyle \sf t=\sqrt{y}+1 \\ \\

Rewrite as :

\displaystyle \sf \longrightarrow t-1=\sqrt{y} \\ \\

\displaystyle \sf \longrightarrow y= (t-1)^2 \\ \\

Now diff. w.r.t. t we get :

\displaystyle \sf \longrightarrow \frac{dy}{dt} =\frac{d}{dt} (t-1)^2 \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1)^{2-1}.(t-1)' \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1).(t'-1') \\ \\

We know derivative of constant is zero!

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1).(1-0) \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1) \\ \\

Hence we get required answer!

Answered by Anonymous
0

Answer:

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1) \\

Step-by-step explanation:

Given :

\displaystyle \sf t=\sqrt{y}+1 \\ \\

Rewrite as :

\displaystyle \sf \longrightarrow t-1=\sqrt{y} \\ \\

\displaystyle \sf \longrightarrow y= (t-1)^2 \\ \\

Now diff. w.r.t. t we get :

\displaystyle \sf \longrightarrow \frac{dy}{dt} =\frac{d}{dt} (t-1)^2 \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1)^{2-1}.(t-1)' \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1).(t'-1') \\ \\

We know derivative of constant is zero!

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1).(1-0) \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1) \\ \\

Hence we get required answer!

Answered by Anonymous
0

Answer:

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1) \\

Step-by-step explanation:

Given :

\displaystyle \sf t=\sqrt{y}+1 \\ \\

Rewrite as :

\displaystyle \sf \longrightarrow t-1=\sqrt{y} \\ \\

\displaystyle \sf \longrightarrow y= (t-1)^2 \\ \\

Now diff. w.r.t. t we get :

\displaystyle \sf \longrightarrow \frac{dy}{dt} =\frac{d}{dt} (t-1)^2 \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1)^{2-1}.(t-1)' \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1).(t'-1') \\ \\

We know derivative of constant is zero!

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1).(1-0) \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1) \\ \\

Hence we get required answer!

Answered by Anonymous
0

Answer:

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1) \\

Step-by-step explanation:

Given :

\displaystyle \sf t=\sqrt{y}+1 \\ \\

Rewrite as :

\displaystyle \sf \longrightarrow t-1=\sqrt{y} \\ \\

\displaystyle \sf \longrightarrow y= (t-1)^2 \\ \\

Now diff. w.r.t. t we get :

\displaystyle \sf \longrightarrow \frac{dy}{dt} =\frac{d}{dt} (t-1)^2 \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1)^{2-1}.(t-1)' \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1).(t'-1') \\ \\

We know derivative of constant is zero!

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1).(1-0) \\ \\

\displaystyle \sf \longrightarrow \frac{dy}{dt} = 2.(t-1) \\ \\

Hence we get required answer!

Similar questions