construct a tangent to a circle of radius 3 cm from a point on the concentric circle radius 5 cm and measure it's length also verify the measurement by actual calculation
Answers
Correct option is
B
4cm,verified
Toconstruct−
twoconcentriccircleswithradii3cm&5cm
andtodrawatangentfromapointAonthe
circumferenceoftheoutercirletotheinnercircle.
Alsotomeasurethelengthofthistangent
andjustifytheresultbycalculation.
Construction−
(I)TakingOascentreandradii3cm&5cm,
twoconcentriccirclesaredrawn.
(II)WetakeanypointAonthecircumferenceof
theoutercircleandjoinAO.
(III)TakingAOasdiameter,asemicircleAPBisdrawn
onAO.
ThesemicircleAPBintersectstheinnercircleatP.
(IV)APisjoined.
(V)APismeasured.
AP=4cm.
Justification−
OPisaradiusofthegiveninnercircleanditisan
angleinthesemicircleAPB.
∴∠OAP=90
o
⟹OP⊥AP.
Nowweknowthatheradius,throughthepointof
contactofatangenttoacircle,isperpendicularto
thetangent.
∴APisatangenttothegiveninnercircle.
∴APistherequiredtangent.
AgainΔOAPisarightonewithOAashypotenusesince
∠OAP=90
o
.
So,byPythagorastheorem,
AP=
OA
2
−OP
2
=
5
2
−3
2
cm=4cm.
So,thelengthofthetangent
=AP=4cmbyactualmeasurement
aswellasbylogicalarguments.
Ans−OptionB.