Math, asked by sugunaanthony576, 5 months ago

Construct a tangent to a circle of radius 4cm from a point on the concentric circle of radius 6cm and measure it's length. Also verify the measurement by actual calculation.​

Answers

Answered by IIJustAWeebII
3

Answer,

 \sf{ (1)Draw \: two \: concentric \: circle \: C(1) \: and \: C(2) \: with \: common \: center}

 \sf{0 \: and \: radius \: 4cm \: and \: 6cm}

 \sf{(2) \: Take \: a \: point \: P \: on \: the \: outer \: circle \: C(2) \: and \: join \: OP.}

 \sf{(3) \: Draw \: the \: bisector \: of \: OP \: which \: bisect \: OP \: at \: M'.}

 \sf{ (4) \: Taking \: M' \: as \: center \: and \: OM' \: as \: radius \: draw \: a \: dotted \: circle \: which}

 \sf{cut \: the  \: inner \: circle \: C(1) \: at \: two \: point \: M \: and \: P.}

 \sf{(5) \: Join \: PM \: and \: PP'.  Thus, \: PM \: and \: PP' \: are \: required \: tangent.}

 \sf{On \: measuring \: PM \: and \: PP'.}

 \sf{PM=PP′=4.4cm}

 \sf{By \: calculation:}

 \sf{In \: ΔOMP,∠PMO=900}

 \sf{PM {}^{2} =OP {}^{2} −OM {}^{2} (by \: pythagoras \: theorem)}

 \sf{PM {}^{2} =(6) {}^{2} −(4) {}^{2} }

 \sf{=36−16=20}

 \sf{PM {}^{2} =20cm}

 \sf{PM=20=4.4 \: cm}

 \sf{ \purple{Hence,the \: length \: of \: the \: tangentis \: 4.4cm}}

❣Hope this helps you mate ✌

Attachments:
Similar questions