Math, asked by mayank4563, 5 months ago

Construct an angle of 90 at the initial point of a given ray and justify the constriction

Answers

Answered by 123456789ritka
2

Answer:

Step I : Draw AB¯¯¯¯¯¯¯¯.

Step II : Taking O as centre and having a suitable radius, draw a semicircle, which cuts OA¯¯¯¯¯¯¯¯ at B.

Step III : Keeping the radius same, divide the semicircle into three equal parts such that BC˘=CD˘=DE˘ .

Step IV : Draw OC¯¯¯¯¯¯¯¯ and OD¯¯¯¯¯¯¯¯.

Step V : Draw OF¯¯¯¯¯¯¯¯, the bisector of ∠COD.

Step-by-step explanation:

Answered by Anonymous
11

JUSTIFICATION:-

\large\tt\underline\red{STEP\:1}

Join AD, CD, DE and AE

\large\tt\underline\red{STEP\:2}

By construction,AC=AD=CD

\therefore\small\sf{∆DAC\:is\:equilateral\:∆}

& \large\sf{\angle{DAC}=60°}

\large\sf\green{AD=DE=AE=60°}

\therefore\small\sf{∆ADE\:is\:a\:equilateral\:∆}

\large\sf{and\:\angle{DAE}=60°}

\small\tt\underline\purple{AF\:is\:the\:angle:bisector\:of\:DAE}

\therefore\large\sf{DAF  =  \frac{1}{2}  \times 60°}

\large\sf{DAF=30°}

\therefore\large\sf{\angle{DAC}+\angle{DAF}=60+30}

\longrightarrow\large\sf{90°}

Attachments:
Similar questions