Math, asked by rohitoli56, 2 months ago

construct rectangle ABCD in which AB=5cm and angleBAC=30degree ​

Answers

Answered by muskanshi536
2

Step-by-step explanation:

\star\;\bold{\underline{\sf{\pink{Given\: Polynomial\: : \: 6x^2 - 3 - 7x}}}}

⠀⠀⠀

:\implies\sf 6x^2 - 7x - 3 = 0 \\\\\\:\implies\sf 6x^2 - 9x + 2x - 3 = 0  \\\\\\:\implies\sf  3x(2x - 3) + 1(2x - 3) = 0 \\\\\\:\implies\sf  (2x - 3) (3x + 1) = 0 \\\\\\:\implies{\underline{\boxed{\frak{\pink{x = \dfrac{3}{2} \; \&\; \dfrac{-1}{\;3}}}}}}\;\bigstar

\sf{\therefore\; Zeroes\; of \; the \: Given \; polynomial \; are \; \dfrac{3}{2} \:\&\; \dfrac{-1 \:   }{\; \: 3 \: }.}

\rule{250px}{.3ex}

\bf{\dag} \:  \: \underline{\textsf{Relation b/w Coefficients \& Zeroes \:  :}}⠀⠀

⠀⠀⠀⠀⠀

{\qquad\maltese\:\:\textsf{Sum of Zeroes :}} \\\\\dashrightarrow\sf\:\:\alpha +\beta= \dfrac{ - \:b \:  \:  \: }{ \:  \:  \: a \:  \:  \:}\\\\\\\dashrightarrow\sf \bigg(\dfrac{3}{2}\bigg) + \bigg(\dfrac{-1}{ \:  \: 3}\bigg) =  - \dfrac{-7}{ \:  \: 6} \\\\\\\dashrightarrow{\underline{\boxed{\frak{\dfrac{7}{6} =  \dfrac{7}{6}}}}}

⠀⠀⠀

{\qquad\maltese\:\:\textsf{Product of Zeroes :}}\\\\\dashrightarrow\sf\:\:\alpha\beta=\dfrac{c}{a}\\\\\\\dashrightarrow\sf \bigg(\dfrac{3}{2}\bigg) \times \bigg(\dfrac{-1 \:  \: }{ \:  \: 3 \:  \: }\bigg) = \dfrac{-3 \:  \: }{ \:  \: 6 \:  \: } \\\\\\\dashrightarrow{\underline{\boxed{\frak{\dfrac{-1}{\;2} = \dfrac{-1}{\;2}}}}}

⠀⠀⠀

\qquad\quad\therefore{\underline{\textsf{\textbf{Hence, Verified!}}}}

Answered by dollybju785
1

Step-by-step explanation:

Step-by-step explanation:

\star\;\bold{\underline{\sf{\pink{Given\: Polynomial\: : \: 6x^2 - 3 - 7x}}}}

⠀⠀⠀

:\implies\sf 6x^2 - 7x - 3 = 0 \\\\\\:\implies\sf 6x^2 - 9x + 2x - 3 = 0  \\\\\\:\implies\sf  3x(2x - 3) + 1(2x - 3) = 0 \\\\\\:\implies\sf  (2x - 3) (3x + 1) = 0 \\\\\\:\implies{\underline{\boxed{\frak{\pink{x = \dfrac{3}{2} \; \&\; \dfrac{-1}{\;3}}}}}}\;\bigstar

\sf{\therefore\; Zeroes\; of \; the \: Given \; polynomial \; are \; \dfrac{3}{2} \:\&\; \dfrac{-1 \:   }{\; \: 3 \: }.}

\rule{250px}{.3ex}

\bf{\dag} \:  \: \underline{\textsf{Relation b/w Coefficients \& Zeroes \:  :}}⠀⠀

⠀⠀⠀⠀⠀

{\qquad\maltese\:\:\textsf{Sum of Zeroes :}} \\\\\dashrightarrow\sf\:\:\alpha +\beta= \dfrac{ - \:b \:  \:  \: }{ \:  \:  \: a \:  \:  \:}\\\\\\\dashrightarrow\sf \bigg(\dfrac{3}{2}\bigg) + \bigg(\dfrac{-1}{ \:  \: 3}\bigg) =  - \dfrac{-7}{ \:  \: 6} \\\\\\\dashrightarrow{\underline{\boxed{\frak{\dfrac{7}{6} =  \dfrac{7}{6}}}}}

⠀⠀⠀

{\qquad\maltese\:\:\textsf{Product of Zeroes :}}\\\\\dashrightarrow\sf\:\:\alpha\beta=\dfrac{c}{a}\\\\\\\dashrightarrow\sf \bigg(\dfrac{3}{2}\bigg) \times \bigg(\dfrac{-1 \:  \: }{ \:  \: 3 \:  \: }\bigg) = \dfrac{-3 \:  \: }{ \:  \: 6 \:  \: } \\\\\\\dashrightarrow{\underline{\boxed{\frak{\dfrac{-1}{\;2} = \dfrac{-1}{\;2}}}}}

⠀⠀⠀

\qquad\quad\therefore{\underline{\textsf{\textbf{Hence, Verified!}}}}

Similar questions