Science, asked by varun7651, 11 months ago

construction and use of
binoculars.​

Answers

Answered by PeacefulSoul
3

Answer:

Binoculars are designed to give an upright view that is correctly oriented left-to-right. Because they allow use of both eyes in a natural way, they are more comfortable than single telescopes, provide depth perception, and improve visual acuity by giving the human visual system two sets of data to process and combine.

#Thankyou!!

Answered by girlanuja
9

Answer:

ok

mqrk as brainliest

atleast 50 thanks

please

Explanation:

rs with an objective lens, eyepiece, and a pair of prisms inside. The prisms reflect and lengthen the light, while the objective lenses enhance and magnify images due to stereoscopic vision.

History

Man has been experimenting with glass since its advent sometime around 3500 b.c. These experiments soon became known for their ocular implications. The designs of early optical instruments, like the telescope, were not recorded. It is assumed that these instruments were studied and perfected by Galileo Galilei. Early binoculars were actually called binocular telescopes, and are thought to be based on Galileo's discoveries and designs of prisms.

Early telescopic lenses were full of bubbles and other imperfections. They were also slightly green due to the iron content in the glass. Polishing techniques were crude, and although lenses were of good quality in the center, the peripheral shape was poor resulting in a restricted aperture. As telescopes were improved, binoculars evolved. The first patent application for binocular telescopes was filed early in the seventeenth century by Jan Lippershey in present day Holland. Lippershey primarily used quartz crystal, which is hard to manipulate. The first hand-held binocular originated in 1702 with Johann Zahn's small binocular of two tubes with a lithe connection.

A patent application submitted in 1854 by Ignatio Porro began the use of the modern prism binocular called the Porro prism erecting system. This optical system consisted of an objective lens and ocular lens (eyepiece) with two facing, right angle prisms arranged to invert and correct the orientation of the image. The two most commonly used prism systems are the porro prism and the roof prism design. The roof system uses prisms positioned one over the other resulting in a more compact design.

An other major breakthrough occurred in 1894 when Carl Zeiss, a German optical specialist, developed binoculars with convex lenses and delta prisms to correct the inverted image. In a porro design, the light is bent in a "Z" shape before reaching the eye, allowing the distance between the eyepiece and the objective lens to be compacted. This enables the size and weight of binoculars to be reduced.

Reductions in the weight of the binoculars occurred with the use of aluminum or polycarbonate housings instead of the heavier metal alloys used in pre-civil war binoculars. Performance of smaller and larger binoculars has improved with the introduction of coatings to render the lenses non-reflective and reduce the amount of scattered light. The quality of prisms has also improved over the years, resulting in a reduction of the bubbling effect of optical glass. In the early 1970s, nitrogen filled, waterproof binoculars were developed. A decade later the arrival of infrared transmitters capable of seeing in the dark further transformed binocular technology. Variable magnification models were also developed allowing the user to adjust the level of magnification.

Raw Materials

Early binocular models had brass housing covers and were relatively heavy and expensive to produce. Subsequent leather or hard rubber covers were replaced in Germany during the World War I by a cover of black lacquered cardboard. Galvanized steel replaced the heavier brass in the housing covers. In the 1930s, nearly all of the metal parts of the service glasses were made of aluminum to save brass and reduce the weight.

Modern-day binocular tubes are primarily made out of aluminum coated with silicon or a leather-like material called gutta-percha. The lenses and prisms are made from glass and coated with an anti-reflective coating.

Similar questions