Math, asked by sgwaeutraav, 1 year ago

✴️CONTENT QUALITY ANSWER✴️

PROVE :
cosec^6  a - cot^{6} a = 1 + 3cot ^{2}a  \times cosec^{2}a
❌ IDIOTIC answers ❌ will be immediately reported ...

Answers

Answered by siddhartharao77
7
Given LHS = (cosec^6a), It can be written as:

(cosec^6a) = (cosec^2a)^3

                   = (cot^2a + 1)^3

We know that (x + y)^3 = x^3 + y^3 + 3xy(x + y)

 cosec^6a = (cot^2a)^3 + 1^3 + 3(cot^2a)(1)(cot^2a + 1)

cosec^6a = (cot^2a)^3 + 1 + 3cot^2a(cosec^2a)

cosec^6a = cot^6a + 1 + 3cot^2a * cosec^2a

cosec^6a - cot^6a = 1 + 3cot^2a * cosec^2a.


LHS = RHS


Hope this helps!

siddhartharao77: If possible brainliest it. :-))
sgwaeutraav: oh.....gr8 @moderator.......uh proved vry well....
sgwaeutraav: thank uh vry much...!
siddhartharao77: :-))
Arshzzz: hy
Similar questions