✴️CONTENT QUALITY ANSWER✴️
PROVE :
❌ IDIOTIC answers ❌ will be immediately reported ...
Answers
Answered by
7
Given LHS = (cosec^6a), It can be written as:
(cosec^6a) = (cosec^2a)^3
= (cot^2a + 1)^3
We know that (x + y)^3 = x^3 + y^3 + 3xy(x + y)
cosec^6a = (cot^2a)^3 + 1^3 + 3(cot^2a)(1)(cot^2a + 1)
cosec^6a = (cot^2a)^3 + 1 + 3cot^2a(cosec^2a)
cosec^6a = cot^6a + 1 + 3cot^2a * cosec^2a
cosec^6a - cot^6a = 1 + 3cot^2a * cosec^2a.
LHS = RHS
Hope this helps!
(cosec^6a) = (cosec^2a)^3
= (cot^2a + 1)^3
We know that (x + y)^3 = x^3 + y^3 + 3xy(x + y)
cosec^6a = (cot^2a)^3 + 1^3 + 3(cot^2a)(1)(cot^2a + 1)
cosec^6a = (cot^2a)^3 + 1 + 3cot^2a(cosec^2a)
cosec^6a = cot^6a + 1 + 3cot^2a * cosec^2a
cosec^6a - cot^6a = 1 + 3cot^2a * cosec^2a.
LHS = RHS
Hope this helps!
siddhartharao77:
If possible brainliest it. :-))
Similar questions