Math, asked by Anonymous, 1 year ago

Content Quality Answer Required

Solve Using - Indefinite Integrals TYPE - 8

Question = ∫ 2 x + 3 / √4x + 3 dx

Answers

Answered by MarkAsBrainliest
2

Answer :

Let, 4x + 3 = z²

∴ 4 dx = 2z dz

or, dx = (z/2) dz

Also, 2x + 3

= (z² - 3)/2 + 3

= (z² - 3 + 6)/2

= (z² + 3)/2

Now,

 \int \frac{(2x + 3)dx}{ \sqrt{4x + 3} } \\ \\ = \int \frac{( \frac{ {z}^{2} + 3}{2}) \: (\frac{z}{2} \: dz)}{z} \\ \\ = \frac{1}{4} \int( {z}^{2} + 3) \: dz \\ \\ = \frac{1}{4} \int {z}^{2} \: dz + \frac{3}{4} \int \: dz \\ \\ = \frac{1}{4} \: \frac{{z}^{3} }{3} + \frac{3z}{4} \: + c, \\ \\ where \: \: c \: \: is \: \: integral \: \: constant \\ \\ = \frac{ {z}^{3} }{12} + \frac{3z}{4} + c \\ \\ = \frac{ {(4x + 3)}^{ \frac{3}{2} } }{12} + \frac{3 \sqrt{4x + 3} }{4} + c\\ \\ =  \frac{ \sqrt{(4x + 3)} }{4} ( \frac{4x + 3}{3}  + 3 ) + c\\  \\  =  \frac{ \sqrt{(4x + 3)} }{4} ( \frac{4x + 3 + 9}{3} ) + c \\  \\  =  \frac{ \sqrt{(4x + 3)} }{4} ( \frac{4x + 12}{3} ) + c \\  \\  =  \frac{(x + 3)}{3}   \sqrt{(4x +  3)}  + c

∵ z = √(4x + 3)

#MarkAsBrainliest


Anonymous: Ok !! Thank you.
Anonymous: Sure i will. Edit your answer as soon as possible !!
Anonymous: Great thanks brother !! Well done...! Thank you.
Answered by hukam0685
2
Dear Student,

please find the solution in attachment.

Attachments:

Anonymous: Thank you for the answer Guru Ji :-) :heart;
Similar questions