Math, asked by sanya55, 1 year ago

✔Content quality needed

Find the general solution of the given equation

 \cos {}^{2} x \: cosec \: x \:  + 3sin \: x + 3 = 0
Please answer it

No spams ❎

Answers

Answered by rohitkumargupta
5
\large{\mathbf{HELLO \: \: DEAR,}}

\mathit{cos^2x*cosecx + 3sinx + 3 = 0}\\ \\ \mathit{(1 - sin^2x)*cosecx + 3(sinx + 1) = 0}<br />\\ \\ \mathit{(1 - sinx)(1 + sinx)*\frac{1}{sinx} + 3(sinx + 1) = 0} \\ \\ \mathit{(1 + sinx)[(1 - sinx)\frac{1}{sinx} + 3)] = 0}\\ \\ \mathit{(1 + sinx)(cosecx - 1 + 3) = 0}\\ \\ \mathit{(1 + sinx)(cosecx + 2) = 0}\\ \\ \mathit{(1 + sinx) = 0}\\ \\\mathit{sinx = - sin\frac{\pi}{2}}\\ \\ \mathit{sinx = sin(\frac{\pi}{2} + \pi)}\\ \\ \mathit{sinx = sin\frac{3\pi}{2}} \\ \\ \mathit{x = n\pi + (-1)^n \frac{3\pi}{2}}<br />

\mathbf{sin 2x = -\frac{1}{2}}\\ \\\mathbf{sin x=- sin\frac{\pi}{6}} \\ \\ \mathbf{sinx = sin(\pi + \frac{\pi}{6})}\\ \\ \mathbf{sinx = sin\frac{7\pi}{6}} \\ \\ \mathbf{x = n\pi + (- 1)^n\frac{7\pi}{6}}\\ \\ \mathbf{x = {n\pi} + (-1)^n\frac{7\pi}{6}}

\large{\mathbf{\underline{I \: \: HOPE \: \: ITS \: \: HELP \: \: YOU \: \: DEAR,<br />\: \: THANKS}}}<br />
Answered by Anonymous
1
hope this helps you..
Attachments:
Similar questions