Math, asked by Anonymous, 1 year ago

*Content quality supportive*
* Best answer will be marked BRAINLIEST*

Prove that (secθ + tanθ - 1)/ (tanθ - secθ + 1) = cosθ/(1 - sinθ)

* Lazy once don't answer*
* Wrong answer will be reported"

Answers

Answered by rohitkumargupta
15
HELLO DEAR,

let (θ) theta=alpha

 \frac{ \tan( \alpha )  + \sec( \alpha )  - 1 }{\tan( \alpha )  -  \sec( \alpha ) + 1}  \\  =  >  \frac{ \tan( \alpha )  +  \sec( \alpha )  - ( { \sec ^{2}  \alpha  } -  { \tan }^{2}  \alpha  )}{\tan( \alpha )  -  \sec( \alpha ) + 1}  \\  =  >  \frac{( \tan( \alpha )  +  \sec( \alpha )(1 -  \sec( \alpha )   +  \tan( \alpha ) )}{(\tan( \alpha )  -  \sec( \alpha ) +1)}  \\  =  >  \tan( \alpha )  +  \sec( \alpha )  \\  =  >  \frac{1}{ \cos( \alpha ) }  +  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  \\  =  >  \frac{(1 +  \sin( \alpha ) )}{ \cos \alpha }  \\  =  > \frac{(1 +  \sin( \alpha ) )}{ \cos \alpha } \times  \frac{(1 -  \sin( \alpha )) }{(1  -   \sin( \alpha )) }  \\  =  >  \frac{1 -  { \sin}^{2} \alpha  }{ \cos( \alpha ) \times (1 -  \sin( \alpha )  )}  \\  =  >  \frac{ { \cos }^{2}  \alpha }{ \cos( \alpha ) \times (1 -  \sin( \alpha ) ) }  \\  =  >  \frac{ \cos( \alpha ) }{(1 -  \sin( \alpha )) }

I HOPE ITS HELP YOU DEAR,
THANKS

Anonymous: Nice ans..
rohitkumargupta: thanks dear
rohitkumargupta: hey
rohitkumargupta: satakshi
rohitkumargupta: increase your points for asking questions
Anonymous: I wanted to increase the point but I was in hurry so it just came of 5 point I wanted to ask this of 15 points
rohitkumargupta: oo
rohitkumargupta: Ok
ABHAYSTAR: Nice answer !
rohitkumargupta: thanks
Similar questions