Contribution of scientific revolution of 17th century in first industrial revolution
Answers
During the 17th century, Europe experienced a series of changes in thought, knowledge and beliefs that affected society, influenced politics and produced a cultural transformation. It was a revolution of the mind, a desire to know how nature worked, to understand the natural laws. The advances in knowledge resulted in a powerful wave that, emerging from astronomy and mathematics, swept the habits, the culture, and the social behaviour of an era.
This period in the history of Europe is known as the Scientific Revolution. The expression is controversial, as historians are still debating when the revolution started and finished, who were the main actors, and how it developed [Hatch 2002-03]. Although some historians favour the figure of Nicolaus Copernicus (1473-1543) and the heliocentric theory to mark the beginning of the Scientific Revolution, others situate the origin in Francis Bacon (1561-1626) and his description of the scientific method. Some other key figures of this period were Tycho Brahe (1546-1601), Rene Descartes (1596-1650), Johannes Kepler (1571-1630), Galileo Galilei (1564-1642) and Isaac Newton (1642-1727).
During centuries, the study of the universe and the understanding of the world was founded on deep thinking, on mulling over different questions trying to unearth the reasons or explanations that gave clues to understanding the phenomena. By the 16th and 17th centuries, the paradigm started to shift as some natural philosophers were rejecting unproven theories and using precise tools to obtain exact measurements to base their discoveries on observation and experimentation [Hakim 2005, 19].
This was the idea that Francis Bacon defended in his work The New Organon (1620). Bacon was a philosopher who did not perform any experiment himself but showed the way and paved the road to knowledge with his vision. René Descartes, a French mathematician and philosopher, expanded the scientific method proposed by Bacon introducing the concept of analysis and describing its method in his book The Discourse on the Method of Rightly Conducting the Reason and Seeking the Truth in the Sciences (1637). There, Descartes proposes that any problem in science, despite its complexity, can be solved by breaking the problems into parts and solving each part separately, because the parts would help to understand the whole. Reason and mathematical proof would shed light on almost any question.
Economy, politics and religion.
As stated previously, mathematics and astronomy were the branches of science that pushed forward the Scientific Revolution. The main reason for that was the economy. Trade was the principal source of income at the time and patrons were interested in obtaining new tools to ensure safer navigation and in having precise charts of the sky to read the stars. New navigational devices such as mariner's astrolabes, quadrants, compasses and nocturnals were designed and produced [Macpherson 1805]. To make observations and to record the exact position of the stars in the sky, astronomers used new and improved armillary spheres and celestial globes. The use of new tools to obtain exact observations reached its zenith with the invention of the telescope, improved by Galileo who, turning it to the skies, observed and described the Moon, the Sun, Jupiter and the Milky Way (Sidereus nuncius Ⓣ, 1610) and whose optical mechanism was described by Kepler (Dioptrice Ⓣ, 1611).
Another source of patronage during the 17th century were the princely courts. The courts provided support to the sciences, not only securing a livelihood for the natural philosopher, but giving him a forum where his ideas could be heard and discussed. Emperors and courtesans surrounded themselves with mathematicians, natural philosophers and, above all, astrologers that, knowing the position of stars and planets, would predict the outcome of battles, the fate of new-born children or the fortune of marriages. This was the case of the astronomer Tycho Brahe and the mathematician Johannes Kepler, both employed in the court of the Holy Roman Emperor Rudolf II, who used their knowledge of astrology to obtain the favour of the emperor so that they could pursue their true interest in obtaining precise astronomical observations and understanding the motion of the planets and their orbits. As Johannes Kepler affirmed in his book Tertius Interveniens
I hope it'll help you
Plz mark it the brainliest