Math, asked by amitrathor4766, 7 months ago

Convert 1+3i÷1-2i into polar form

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
19

Answer:-

\red{\bigstar} Polar form \large\leadsto\boxed{\rm\purple{\sqrt{2} \bigg(cos \dfrac{3\pi}{4} + i \: sin\dfrac{3 \pi}{4}\bigg)}}

Given:-

\sf \dfrac{1 + 3i}{1 - 2i}

Solution:-

\sf z = \dfrac{1 + 3i}{1 - 2i}

Rationalising:-

\sf \dfrac{1+3i}{1-2i} \times \dfrac{1+2i}{1+2i}

\sf \dfrac{1+2i+3i-6}{1+4}

\sf \dfrac{-5 + 5i}{5}

\sf \dfrac{5(-1 + i)}{5}

\bf -1 + i

Let r cosθ = -1 , r sinθ = 1

Squaring both sides and adding:-

\sf r^2(cos^{2} \theta + sin^{2} \theta = 1+1

\sf r^2(cos^{2} \theta + sin^{2} \theta = 2

\sf r^2 = 2 \dashrightarrow\bf\red{[\because cos^2 \theta + sin^2 \theta = 1]}

\sf r = \sqrt{2}\dashrightarrow\bf\red{[r>0]}

\therefore

\sf \sqrt{2} cos \theta = -1

\sf \sqrt{2} sin \theta = 1

\sf cos \theta = \dfrac{-1}{\sqrt{2}}

\sf sin \theta = \dfrac{1}{\sqrt{2}}

\therefore

\sf \theta = \pi - \dfrac{\pi}{4} = \dfrac{3\pi}{4}\dashrightarrow\bf\red{[\because \theta \: lies \: in \: 2nd \: Quadrant]}

\sf z = r \: cos \theta + i \: r \: sin \theta

\sf \sqrt{2} cos \dfrac{3\pi}{4} + i \sqrt{2} sin \dfrac{3\pi}{4}

\sf \sqrt{2} \bigg(cos \dfrac{3\pi}{4} + i \: sin\dfrac{3 \pi}{4}\bigg)

★ Hence, it is the polar form.

Similar questions