convert 4√tan2A-sin2A to 4√tanAsinA
Answers
Answered by
0
Answer:
Given, sin 2A = 4/5
Therefore, 2tanA1+tan2A = 4/5
⇒ 4 + 4 tan2 A = 10 tan A
⇒ 4 tan2 A - 10 tan A + 4 = 0
⇒ 2 tan2 A - 5 tan A + 2 = 0
⇒ 2 tan2 A - 4 tan A - tan A + 2 = 0
⇒ 2 tan A (tan A - 2) - 1 (tan A - 2) =0
⇒ (tan A - 2) (2 tan A - 1) = 0
Therefore, tan A - 2 = 0 and 2 tan A - 1 = 0
⇒ tan A = 2 and tan A = 1/2
According to the problem, 0 ≤ A ≤ π/4
Therefore, tan A = 2 is impossible
Therefore, the required value of tan A is 1/2
Explanation:
sin 2A = 2 sin A cos A
⇒ sin 2A = 2 sinAcosA ∙ cos2 A
⇒ sin 2A = 2 tan A ∙ 1sec2A
⇒ sin 2A = 2tanA1+tan2A
There for sin 2A = 2tanA1+tan2A
Similar questions