Math, asked by hareemnadeem212, 5 days ago

Convert €65.90 to pounds.
Give your answer rounded to 2 DP.

Answers

Answered by randomkapoor11
0

Answer:

\large\underline{\sf{Solution-}}

Solution−

Given that,

Diameter of cone = 3.5 cm = 7/2 cm

So, radius of cone, r = 7/4 cm

Height of cone, h = 3 cm

We know, Volume of cone of radius r and height h is given by

\begin{gathered}\boxed{\rm{ \:Volume_{(cone)} \: = \: \frac{\pi}{3} \: {r}^{2} \: h \: \: }} \\ \end{gathered}

Volume

(cone)

=

3

π

r

2

h

So, using this result, we have

\begin{gathered}\rm \: \:Volume_{(1 \: cone)} \: = \: \frac{\pi}{3} \: {r}^{2} \: h \: \: \\ \end{gathered}

Volume

(1cone)

=

3

π

r

2

h

So,

\begin{gathered}\rm \: \:Volume_{(504 \: cones)} \: = \: 504 \times \frac{\pi}{3} \: {r}^{2} \: h \: \: \\ \end{gathered}

Volume

(504cones)

=504×

3

π

r

2

h

\begin{gathered}\rm \: \:Volume_{(504 \: cones)} \: = \: 168 \:\pi \: {r}^{2} \: h \: - - - (1) \: \\ \end{gathered}

Volume

(504cones)

=168πr

2

h−−−(1)

Now, it is given that,

504 cones, each of diameter 3.5 cm and height 3 cm are melted and recast into a metallic sphere.

Let assume that radius of sphere be R cm.

So, as 504 cones melted and recast in to a metallic sphere.

\begin{gathered}\rm \: Volume_{(504 \: cones)} = Volume_{(sphere)} \\ \end{gathered}

Volume

(504cones)

=Volume

(sphere)

\begin{gathered}\rm \: 168\pi \: {r}^{2}h \: = \: \dfrac{4}{3}\pi \: {R}^{3} \\ \end{gathered}

168πr

2

h=

3

4

πR

3

\begin{gathered}\rm \: 42\pi \: {r}^{2}h \: = \: \dfrac{1}{3}\pi \: {R}^{3} \\ \end{gathered}

42πr

2

h=

3

1

πR

3

\begin{gathered}\rm \:3 \times 42\: \times \frac{7}{4} \times \frac{7}{4} \times 3 \: = \: {R}^{3} \\ \end{gathered}

3×42×

4

7

×

4

7

×3=R

3

\begin{gathered}\rm \:3 \times 21\: \times \frac{7}{2} \times \frac{7}{4} \times 3 \: = \: {R}^{3} \\ \end{gathered}

3×21×

2

7

×

4

7

×3=R

3

\begin{gathered}\rm \:3 \times 7 \times 3\: \times \frac{7}{2} \times \frac{7}{2 \times 2} \times 3 \: = \: {R}^{3} \\ \end{gathered}

3×7×3×

2

7

×

2×2

7

×3=R

3

\begin{gathered}\rm \: {\bigg(\dfrac{21}{2} \bigg) }^{3} \: = \: {R}^{3} \\ \end{gathered}

(

2

21

)

3

=R

3

\begin{gathered}\rm\implies \:R = \dfrac{21}{2} \: cm \\ \end{gathered}

⟹R=

2

21

cm

Hence,

\begin{gathered}\rm\implies \:Diameter \: of \: sphere \: = \: 21 \: cm \\ \end{gathered}

⟹Diameterofsphere=21cm

Now,

\begin{gathered}\rm \: Surface \: Area_{(sphere)} \\ \end{gathered}

SurfaceArea

(sphere)

\begin{gathered}\rm \: = \:4 \: \pi \: {r}^{2} \\ \end{gathered}

= 4πr

2

\begin{gathered}\rm \: = \:4 \times \dfrac{22}{7} \times \dfrac{21}{2} \times \dfrac{21}{2} \\ \end{gathered}

= 4×

7

22

×

2

21

×

2

21

\begin{gathered}\rm \: = \:22 \times 3 \times 21 \\ \end{gathered}

= 22×3×21

\begin{gathered}\rm \: = \:1386 \: {cm}^{2} \\ \end{gathered}

= 1386cm

2

\begin{gathered}\rm\implies \:\rm \: Surface \: Area_{(sphere)} \: = \: 1386 \: {cm}^{2} \\ \end{gathered}

⟹SurfaceArea

(sphere)

=1386cm

2

\rule{190pt}{2pt}

Additional Information

\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bf{Volume_{(cube)} = {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

MoreFormulae

MoreFormulae

★CSA

(cylinder)

=2πrh

★Volume

(cylinder)

=πr

2

h

★TSA

(cylinder)

=2πr(r+h)

★CSA

(cone)

=πrl

★TSA

(cone)

=πr(l+r)

★Volume

(sphere)

=

3

4

πr

3

★Volume

(cube)

=(side)

3

★CSA

(cube)

=4(side)

2

★TSA

(cube)

=6(side)

2

★Volume

(cuboid)

=lbh

★CSA

(cuboid)

=2(l+b)h

★TSA

(cuboid)

=2(lb+bh+hl)

Similar questions