Math, asked by Shubusingh58, 1 year ago

Convert in polar form   -1-i

Answers

Answered by Anonymous
14
\huge{HEY MATE!!! }

HERE IS UR ANSWER ⏬⏬⏬⏬⏬

❇➡ Let z = -1-i. Then,

               r = l z l = √ (-1)2 + (-1)2 = √2

 

Let tan α = | Im (z) / Re (z) |. Then,

      tan α = | -1/ -1 | = 1 or α = π/4

Since the point ( -1, -1) representing z lies in the third quadrant. Therefore, the argument of z is given by 

                   θ = - (π - α) = - ( π - π/4) = -3π/4

So, the polar form of z = -1-i is

                  z = r ( cosθ + i sin θ )

                     = √2{ cos (-3π/4) + i sin (-3π/4) }

                     = √2 ( cos 3π/4 - i sin 3π/ 4) is the required answer

Hope it helps.

Cheer!!!!!!!!!!!!!!!!!
Answered by Anonymous
5
\huge{Hello Friend}

The answer of u r question is..✌️✌️

✨Convert in polar form -1-i

Ans:✍️✍️✍️✍️✍️✍️

Let,

r \:  = z  \:  =  \sqrt{( - 1)} 2 + ( - 1)2 =  \sqrt{2}



Let,


tan \: a \:  =  | \frac{m(2)}{r \: e \: (2)} |


Then,

tan \: a \:  =  | \frac{ - 1}{ - 1} |  = 1 =  \frac{\pi}{4}


 = tita =  - (\pi - a) =  - (\pi -  \frac{\pi}{4} ) =  - 3 \frac{\pi}{4}

so,

Polar form of -1-i is....

z = n(cos \: 0 + i \: sin \: 0)


 =  \sqrt{2} (cos \:  - 3 \frac{\pi}{4} ) + i \: sin \: ( - 3 \frac{\pi}{4} )

 =  \sqrt{2} (\:  {cos3\pi}{4 - i \: sin \:  \frac{3\pi}{4} } )

Thank you..⭐️⭐️



Similar questions