Convert in polar form -1-i
Answers
Answered by
14
HERE IS UR ANSWER ⏬⏬⏬⏬⏬
❇➡ Let z = -1-i. Then,
r = l z l = √ (-1)2 + (-1)2 = √2
Let tan α = | Im (z) / Re (z) |. Then,
tan α = | -1/ -1 | = 1 or α = π/4
Since the point ( -1, -1) representing z lies in the third quadrant. Therefore, the argument of z is given by
θ = - (π - α) = - ( π - π/4) = -3π/4
So, the polar form of z = -1-i is
z = r ( cosθ + i sin θ )
= √2{ cos (-3π/4) + i sin (-3π/4) }
= √2 ( cos 3π/4 - i sin 3π/ 4) is the required answer
Hope it helps.
Cheer!!!!!!!!!!!!!!!!!
Answered by
5
The answer of u r question is..✌️✌️
✨Convert in polar form -1-i
Ans:✍️✍️✍️✍️✍️✍️
Let,
Let,
Then,
so,
Polar form of -1-i is....
Thank you..⭐️⭐️
Similar questions