Math, asked by anu298110, 7 months ago

convert into polar form 1+ i root 3​

Answers

Answered by Anonymous
0

Answer:

Z=1+i

3

=2(

2

1

+i

2

3

)...........(1)

Let Polar form of Given Equation be Z=rcosθ+ir sinθ...............(2)

Comparing (1) and (2)

we can write,

rcosθ=2∗

2

1

=2cos60

o

rsinθ=2∗

2

1

=2sin60

o

∴Z=2(cos60

o

+isin60

o

)

Answered by Ataraxia
11

Solution :-

\bf Polar \ form \ :  \ z = r  cos \theta+ i \ r sin \theta

Here,

\sf z = 1+i\sqrt{3}

\longrightarrow\sf rcos \theta = 1 \\\\\longrightarrow r^2 cos^2 \theta= 1  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  .................(1)

\longrightarrow \sf r sin \theta = \sqrt{3} \\\\\longrightarrow r^2 sin^2 \theta= 3  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  .................(2)

Adding eq (2) and eq (1),

\longrightarrow \sf r^2 cos \theta + r^2 sin \theta = 1+ 3\\\\\longrightarrow r^2(cos \theta+sin \theta) = 4 \\\\\longrightarrow r^2 \times 1 = 4 \\\\\longrightarrow \bf r = 2

Modulus = 2

\hookrightarrow \sf 2 cos \theta = 1 \\\\\hookrightarrow\bf cos \theta = \dfrac{1}{2}

\hookrightarrow \sf 2 sin \theta = \sqrt{3} \\\\\hookrightarrow \bf sin \theta=  \dfrac{\sqrt{3}} {2}

\sf sin \theta and \sf cos \theta are positive.

So, the argument lies in the first quadrant.

\sf sin \theta = \dfrac{\sqrt{3}}{2} and \sf cos \theta = \dfrac{1}{2} .

\therefore \sf \theta = 60 ^{\circ}

Argument = \sf 60^{\circ}

                 = \sf 60\times \dfrac{\pi}{180}\\\\= \dfrac{\pi}{3}

\bf Polar \ form = 2 \left( cos \dfrac{\pi}{3}+i  \ sin \dfrac{\pi}{3} \right)

Similar questions