Math, asked by ranyodhsingh617, 1 year ago

convert the complex number 1+i/1 - I into polar form

Answers

Answered by Priyamondal
55
1+i/1-i=1+I/1-i ×1+I/1+i=(1+i)^2/1^2-i^2=1+2i+i^2/1+1=1+2i-1/2=2i/2=i z=0+i. Modulus of complex number =r=√z=√a^2+b^2=√0^2+1^2=√1=1. Argument of complex =0+I=r(cos Tita+isin Tita) =0+i=1(costita+isintita). Therefore cos Tita =0 or sin Tita = 1.(+, +) lies on first quadrant. Argument (z) =90°=π/2.Therefore polar form =r(costita+isin Tita) =1(cosπ/2+sinπ/2).
Answered by amitkumar44481
84

AnsWer :

Cos π/ 2 + i Sin π/2.

SolutioN :

  • Complex number given.

 \tt \dagger \:  \:  \:  \:  \: z =  \dfrac{1 + i}{1  - i}

 \tt  : \implies z =  \dfrac{1 + i}{1  - i}

 \tt  : \implies z =  \dfrac{1 + i}{1  - i}  \times  \dfrac{1 + i}{1  + i}

 \tt  : \implies z =  \dfrac{(1 + i)(1 + 1)}{{1}^{2}   -{ i}^{2} }

࿊ We Know,

  • i² = - 1.

 \tt  : \implies z =  \dfrac{(1 + i)(1 + 1)}{1   -( - 1) }

 \tt  : \implies z =  \dfrac{(1 + i)(1 + 1)}{2 }

 \tt  : \implies z =  \dfrac{ {1}^{2} + i + i +  {i}^{2}  }{2 }

 \tt  : \implies z =  \dfrac{ 1+ i + i  - 1}{2 }

 \tt  : \implies z =  \dfrac{ \cancel{ 1}+ i + i   \cancel{- 1}}{2 }

 \tt  : \implies z =  \dfrac{ 2i }{2 }

 \tt  : \implies z =  \dfrac{ \cancel{ 2}i }{ \cancel2 }

 \tt  : \implies z =i.

࿊ We know,

  • Z = a + bi.

 \tt\dagger \:  \:  \:  \:  \:   \underline{General  \: Equation}  \: of \:  Z =  0 + i .

\rule{90}2

 \tt  : \implies r =   \sqrt{ {x}^{2}  +  {y}^{2} }

࿊ Where as,

  • x = 0.
  • y = 1.

 \tt  : \implies r =   \sqrt{ {0}^{2}  +  {1}^{2} }

 \tt  : \implies r =   \sqrt{ 1}

 \tt  : \implies r =   \pm1.

Now,

Let's find Arg with θ.

 \tt \longmapsto \alpha   = tan   \bigg| \dfrac{y}{x}   \bigg|

 \tt \longmapsto \alpha   = tan   \bigg| \dfrac{1}{0}   \bigg|

 \tt \longmapsto \alpha   = tan \infty

࿊ We know,

  • The value of tan ∞ = tan 90°

 \tt \longmapsto \alpha   = tan \ 90  \degree

 \tt \longmapsto \alpha   = tan  \dfrac{ \pi}{2}

\rule{90}2

Now,

  • The given Complex number lies on first Quadrant

 \tt \longmapsto   \theta= \alpha

 \tt \longmapsto   \theta= tan \dfrac{ \pi}{2}

\rule{90}2

☯ We have, Formula.

  • Polar form.

 \tt \longmapsto r \,Cos\, \theta +r\,i\,Sin\,\theta.

 \tt \longmapsto (1) \,Cos\, \dfrac{ \pi}{2}  +(1)\,i\,Sin\, \dfrac{ \pi}{2} .

 \tt \longmapsto Cos\, \dfrac{ \pi}{2}  +i\,Sin\, \dfrac{ \pi}{2} .

Therefore, the polar form of given Complex number is Cos π/ 2 + i Sin π/2.

Similar questions