Math, asked by priyamvada32, 8 months ago

convert the complex number -1-i in polar form​

Answers

Answered by Anonymous
18

Answer:

1+i

Step-by-step explanation:

Here, in complex form, z=-1+i

So, r=lzl=\sqrt{(-1)^{2}+(-1)^{2} }=\sqrt{1+1}=\sqrt{2}

θ=tan⁻¹[(-1)(-1)]

 =tan⁻¹(1)

 =π/4

a=r cosθ=\sqrt{2}x(1/\sqrt{2})=1

b=r sinθ=\sqrt{2}x(1/\sqrt{2})=1

so, in polar form, z=r(cosθ+i sinθ)

                              =\sqrt{2}[(1/\sqrt{2})+i x (1/\sqrt{2})]

                              =\sqrt{2}x[(1+i)/\sqrt{2}]

                              =1+i

PLEASE RATE, THANK AND MARK AS BRAINLIEST.

Similar questions