Math, asked by bardwajmanisha349, 4 days ago

convert the complex number -1+i in thepolar form math +1​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\: - 1 + i

Let assume that

\rm :\longmapsto\: - 1 + i  = r(cos\theta + i \: sin\theta) -  -  - (1)

can be rewritten as

\rm :\longmapsto\: - 1 + i  = r \: cos\theta + i \:r  \: sin\theta

On comparing Real and Imaginary parts, we get

\rm :\longmapsto\:rcos\theta =  - 1 -  -  - (2)

and

\rm :\longmapsto\:rsin\theta = 1 -  -  - (3)

On squaring equation (2) and (3) and adding, we get

\rm :\longmapsto\: {r}^{2} {cos}^{2}\theta +  {r}^{2} {sin}^{2}\theta =  {( - 1)}^{2} +  {1}^{2}

\rm :\longmapsto\: {r}^{2} ({cos}^{2}\theta + {sin}^{2}\theta )=  1 + 1

\rm :\longmapsto\: {r}^{2}  =  2

\bf\implies \:r \:  =  \:  \sqrt{2}  -  -  - (4)

On substituting the value of r in equation (2) and (3), we get

\rm :\longmapsto\:cos\theta =  - \dfrac{1}{ \sqrt{2} }  \: and \: sin\theta = \dfrac{1}{ \sqrt{2} }

\bf\implies \:\theta = \pi - \dfrac{\pi}{4}  = \dfrac{3\pi}{4}

So, Equation (1) can be rewritten as

\rm \implies\:\boxed{ \tt{ \:  - 1 + i =  \sqrt{2}\bigg(cos\dfrac{3\pi}{4} + i \: sin \dfrac{3\pi}{4} \bigg) \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

Short cut trick to find the Argument of a complex number z = x + iy

\begin{gathered}\boxed{\begin{array}{c|c} \bf complex \: no & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1} \bigg|\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1} \bigg|\dfrac{y}{x} \bigg| \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1} \bigg|\dfrac{y}{x} \bigg|\\ \\ \sf x - iy & \sf  - {tan}^{ - 1} \bigg|\dfrac{y}{x} \bigg| \end{array}} \\ \end{gathered}

Similar questions