Convert the complex numbers in polar form and also in exponential firm z=-6+√2i
Answers
Answered by
0
Answer:
z=-6+√2i
a= - 6,b=√2..z=-6+√2i .i.e a<0, b>0
Therefore
r=√{ a^2 + b^2}
r=√{ (- 6)^2 + ( √{2} )^2}
r=√{36+2}
r=√{
38}
Here (-6, √{2} )
lies in {2}^{nd} quadrant
amp (z)= t
= \pi + tan^{-1}( \frac{b}{a} )
= \pi + tan ^{ - 1} (\frac{ - √{ 2} }{6} )
therefore the polar form is z = r( cos(t) + isin(t) )
z =√{38} ( cos(t) + isin(t) )
where (t )
= \pi + tan ^{ - 1} (\frac{ -√{ 2} }{6} )
The exponential form of z = {re}^{it}
√{38} e ^{\pi + \ {tan}^{ - 1} \frac{ (- √{2} )}{6} }
Similar questions
Environmental Sciences,
1 month ago
Geography,
1 month ago
Physics,
10 months ago
Hindi,
10 months ago
English,
10 months ago