Math, asked by Anonymous, 9 hours ago

Convert the following angles in to radian?

1) 40°48'
2) 75°30'


Don't spam ❌​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given angle is

\rm :\longmapsto\:40 \degree \: 48'

We know,

In sexagesimal system of measuring of angle, in Trigonometry, we have

\rm\implies \:\boxed{\tt{ 1\degree  = 60' \: }} \\

So, using this, we have

\rm \:  =  \: \:\bigg[40 \: \dfrac{48}{60} \bigg]^{\degree }

\rm \:  =  \: \:\bigg[40 \: \dfrac{4}{5} \bigg]^{\degree }

\rm \:  =  \: \dfrac{204}{5}^{\degree }

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ 1\degree  =  {\bigg[\dfrac{\pi}{180} \bigg]}^{c} \: }}} \\

So, using this, we get

\rm \:  =  \: \dfrac{204}{5} \times \dfrac{\pi}{180}

\rm \:  =  \:  \dfrac{51\pi}{225}

Hence,

\rm\implies \:\boxed{\tt{ \rm \: 40\degree 48' =  \:  \dfrac{51\pi}{225}   \: }} \\

\large\underline{\sf{Solution-2}}

Given angle is

\rm :\longmapsto\:75\degree 30'

can be rewritten as

\rm \:  =  \: \:\bigg[75 \: \dfrac{30}{60} \bigg]^{\degree }

\rm \:  =  \: \:\bigg[75 \: \dfrac{1}{2} \bigg]^{\degree }

\rm \:  =  \: \dfrac{151}{2}^{\degree }

\rm \:  =  \: \dfrac{151}{2} \times \dfrac{\pi}{180}

\rm \:  =  \:  \dfrac{151\pi}{360}

Hence,

\rm\implies \:\boxed{\tt{ \rm \: 75\degree 30' =  \:  \dfrac{151\pi}{360}   \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\boxed{\tt{ 1 \: rt. \: angle = 90\degree  =  {\bigg[\dfrac{\pi}{2} \bigg]}^{c} =  {100}^{g}}} \\

\boxed{\tt{ l \: =  \:  r \:  \times  \:  \theta \: }} \\

One radian is defined as an angle subtended at the centre of the circle by an arc whose length is equal to radius of the circle.

Answered by XxitzZBrainlyStarxX
9

Question:-

Convert the following angles into radian?

1) 40°48'.

2) 75°30'.

Given:-

  • 40°48'.

  • 75°30'.

To Find:-

  • Need to convert the following angles into radian.

Solution:-

1) 40°48'.

= 40°48'

\sf \large = 40 \degree + ( \frac{48}{60} ) \degree

\sf \large = 40 \degree + ( \frac{4}{5} ) \degree

 \sf \large = ( \frac{204 \degree}{5} \times  \frac{\pi}{180}  ) {}^{rad}

 \sf \large = \frac{204}{180 \times 5}  \times \pi

 \sf \large =  \frac{51}{45 \times 5}  =  \frac{51\pi}{225 \: radian}

________________________________________

2) 75°30'.

= 75°30'

 \sf \large = 75 \degree + ( \frac{30}{60} ) \degree

 \sf \large = (75 +  \frac{1}{2} ) \degree

  \sf \large (\frac{151}{2} ) \degree

 \sf \large = ( \frac{151}{2} ) \times ( \frac{\pi}{180} )

 \sf \large =  \frac{151\pi}{360 \: radian}

Answer:-

 \sf \large{ \boxed{ \sf \red{1)   \: 40°48' =  \frac{51\pi}{225 \: radian}. }}}

 \sf \large { \boxed{ \sf \blue{2) \:75°30' =  \frac{151\pi}{360 \: radian}  . }}}

Hope you have satisfied.

Similar questions