Math, asked by arifagulrather, 9 months ago

Convert the following into power notations.
(a) -8/27
(b)49/81
(c) 8/125​

Answers

Answered by mysticd
2

 \underline{\pink { Power \: notations: }}

 \red{ a) \frac{-8}{27}}

 = \Big( \frac{(-2)^{3}}{3^{3}}\Big)

 = \Big( \frac{-2}{3}\Big)^{3}

Therefore.,

 \red{ a) \frac{-8}{27}} \green { = \Big( \frac{-2}{3}\Big)^{3}}

 \red{ b) \frac{49}{81}}

 = \Big( \frac{(7)^{2}}{9^{2}}\Big)

 = \frac{7^{2}}{3^{4}}

Therefore.,

 \red{ a) \frac{49}{81}} \green { =  \frac{7^{2}}{3^{4}}}

 \red{ c) \frac{8}{125}}

 = \Big( \frac{(2)^{3}}{5^{3}}\Big)

 = \Big( \frac{2}{5}\Big)^{3}

Therefore.,

 \red{ a) \frac{8}{125}} \green { = \Big( \frac{2}{5}\Big)^{3}}

•••♪

Answered by JeanaShupp
4

To find: The power notations of the following:

(a) -\dfrac{8}{27}

(b) \dfrac{49}{81}

(c) \dfrac{8}{125}

Identity : \dfrac{a^n}{b^n}=(\dfrac{a}{b})^n

Solution: (a) Since 8=2\times2\times2=2^3

27=3\times3\times3=3^3\\\\\Rightarrow\ -\dfrac{8}{27}=-\dfrac{2^3}{3^3}=-(\dfrac{2}{3})^3

(b)  Since 49=7\times7=7^2,\ \ 81= 9\times9=9^2

\Rightarrow\ \dfrac{49}{81}=\dfrac{7^2}{9^2}=(\dfrac{7}{9})^2

(c) Since 8=2\times2\times2=2^3

125=5\times5\times5=5^3\\\\\Rightarrow\ \dfrac{8}{125}=\dfrac{2^3}{5^3}=(\dfrac{2}{5})^3

Hence, (a)-\dfrac{8}{27}=-(\dfrac{2}{3})^3  (b)\dfrac{49}{81}=(\dfrac{7}{9})^2   (c) \dfrac{8}{125}=(\dfrac{2}{5})^3

Similar questions