asked by arnav9688, 13 days ago

# Convert the following while into a for loop.public void sum (int n) {int s=0;while(n>0) {s=s+n%10;n/=10; }System.out.println(“Sum of digits = “+s);​

0

Explanation:

hhshshhshshaahussjjsushs

0

Given Expression,

\displaystyle \sf \lim_{x \to \: 0} \: \dfrac{ {sin}^{2}ax }{ {sin}^{2} bx}

x→0

lim

sin

2

bx

sin

2

ax

Multiplying and dividing by (ax)² in numerator and (bx)² in denominator,

\begin{gathered} \implies \displaystyle \sf \lim_{x \to \: 0} \: \dfrac{(ax) {}^{2} {sin}^{2}ax }{(ax) {}^{2} } \times \dfrac{(bx) {}^{2} }{ {sin}^{2}bx(bx) {}^{2} } \\ \\ \implies \displaystyle \sf {a}^{2} {x}^{2} \lim_{x \to \: 0} \: \dfrac{ {sin}^{2}ax }{(ax) {}^{2} } \times \dfrac{1}{ {b}^{2} {x}^{2} } \lim_{x \to \: 0}\dfrac{(bx) {}^{2} }{ {sin}^{2}bx} \\ \\ \implies \displaystyle \sf {a}^{2} {x}^{2} \lim_{x \to \: 0} \: \dfrac{ {sin \: }^{}ax }{(ax) {}^{} } \times\lim_{x \to \: 0} \: \dfrac{ {sin \: }^{}ax }{(ax) {}^{} } \times \dfrac{1}{ {b}^{2} {x}^{2} } \lim_{x \to \: 0}\dfrac{(bx) {}^{} }{ {sin}^{ \: }bx} \times \lim_{x \to \: 0}\dfrac{(bx) {}^{} }{ {sin}^{ \: }bx} \\ \\ \implies \sf \: \dfrac{a {}^{2} { {x}^{2}} }{ {b}^{2} {x}^{2} } \times 1 \\ \\ \implies \sf \: \dfrac{a {}^{2} { } }{ {b}^{2} }\end{gathered}

x→0

lim

(ax)

2

(ax)

2

sin

2

ax

×

sin

2

bx(bx)

2

(bx)

2

⟹a

2

x

2

x→0

lim

(ax)

2

sin

2

ax

×

b

2

x

2

1

x→0

lim

sin

2

bx

(bx)

2

⟹a

2

x

2

x→0

lim

(ax)

sin

ax

×

x→0

lim

(ax)

sin

ax

×

b

2

x

2

1

x→0

lim

sin

bx

(bx)

×

x→0

lim

sin

bx

(bx)

b

2

x

2

a

2

x

2

×1

b

2

a

2

The value of the above expression at x tends to

Similar questions
Social Sciences, 6 days ago
Math, 6 days ago
India Languages, 6 days ago
Science, 13 days ago
Biology, 6 months ago
English, 6 months ago
Science, 6 months ago