Math, asked by Anonymous, 5 hours ago

Convert the given complex number into polar form : 1 - i


No spam!! ​

Answers

Answered by aanshithawaitclass
0

Answer:

Given, z=1−i

Let rcosθ=1andrsinθ=−1

On squaring and adding, we obtain

r

2

cos

2

θ+r

2

sin

2

θ=1

2

+(−1)

2

⇒r

2

(cos

2

θ+sin

2

θ)=2

⇒r

2

=2

⇒r=

2

(since,r>0 )

2

cosθ=1 and

2

sinθ=−1

∴θ=−

4

π

(As θ lies in fourth quadrant.)

So, the polar form is

∴1−i=rcosθ+irsinθ=

2

cos(

4

−π

)+i

2

sin(

4

−π

)

=

2

[cos(

4

−π

)+isin(

4

−π

)]

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\:1 - i

Let assume that

\rm :\longmapsto\:1  -  i = r(cos\theta  + isin\theta ) -  -  - (1)

can be further rewritten as

\rm :\longmapsto\:1  -  i = r \: cos\theta  + i \: r \: sin\theta

On comparing with Real and Imaginary parts, we get

\rm :\longmapsto\:r \: cos\theta  = 1 -  -  - (2)

\rm :\longmapsto\:r \: sin\theta  =  - 1 - -  -  - (3)

On squaring equation (2) and (3) and add, we get

\rm :\longmapsto\: {r}^{2} {cos}^{2}\theta  +  {r}^{2} {sin}^{2}\theta  = 1 + 1

\rm :\longmapsto\: {r}^{2}( {cos}^{2}\theta  + {sin}^{2}\theta ) = 2

\rm :\longmapsto\: {r}^{2} = 2

\bf\implies \:r =  \sqrt{2}

On Substituting the value of r in equation (2) and (3), we get

\rm :\longmapsto\:cos\theta  = \dfrac{1}{ \sqrt{2} }

and

\rm :\longmapsto\:sin \theta  = -  \dfrac{1}{ \sqrt{2} }

\rm \implies\:\theta  \: lies \: in \:  {4}^{th}  \: quadrant

\bf\implies \:\theta  \:  =  \:  -  \: \dfrac{\pi}{4}

So, on substituting the values in equation (1), we get

\boxed{\tt{ 1 - i =  \sqrt{2}\bigg(cos\bigg[ - \dfrac{\pi}{4} \bigg]  + i \: sin\bigg[ - \dfrac{\pi}{4} \bigg]\bigg) \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

Argument of complex number

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions