Math, asked by Anonymous, 8 days ago

Convert the rectangular equation to polar form.
 {x}^{2}  + (y - 2) {}^{2}  = 4

Answers

Answered by Anonymous
11

Given :-

 \sf {x}^{2} + (y - 2) {}^{2} = 4

To Find :-

The Equation in polar form

Solution :-

We knows a algebraic Identity i.e

 \quad \qquad { \bigstar { \underline { \boxed { \bf { \red { ( a - b)² = a² + b² - 2ab }}}}}}{\bigstar}

Using this the given equation transforms to ;

 \quad { : \longmapsto { \sf { x² +  {  \bigg [ ( y² ) + ( 2² ) - 2 × 2 × y }\bigg ] = 4 }}}

 \quad { : \longmapsto { \sf { x² + y² - 4y = 4 - 4 }}}

 \quad { : \longmapsto { \sf{ x² + y² - 4y = 0 }}}

Now , To Change the equation to polar form Put ;

  •  \sf r Cos \theta = x

  •  \sf r Sin \theta = y

For all  \sf r \in \mathbb N

Now , The given Equation transforms to ;

 \quad { : \longmapsto { \sf { ( r Cos \theta )² + ( r Sin \theta )² = 4y }}}

 \quad { : \longmapsto { \sf { r² Cos² \theta + r² Sin² \theta = 4y }}}

 \quad { : \longmapsto { \sf { r² ( Sin² \theta + Cos² \theta ) = 4y }}}

Now , we knows a Identity i.e ;

 \quad \qquad { \bigstar { \underline { \boxed { \bf { \red { ( Sin² \theta + Cos² \theta ) = 1  }}}}}}{\bigstar}

Using this we have ;

 \quad { : \longmapsto { \sf { r² ( 1 ) = 4y }}}

 \quad { : \longmapsto { \sf { r² = 4y  }}}

 \quad { : \longmapsto { \sf { r² = ( \pm \sqrt{4y} ) }}}

 \quad { : \longmapsto { \sf { ( r )² = ( \pm 2\sqrt{y} )²}}}

Square gets cancelled & then we have ;

 \quad { : \longmapsto { \sf { r = \pm 2 \sqrt{y} }}}

 \quad { \sf { \sf But \:\:  \sf r \neq - 2\sqrt{y} }} \quad \qquad { \bigg [ \because r \in \mathbb N } \bigg ]

 \quad \qquad { \bigstar { \underline { \boxed { \bf { \red { \therefore r = 2\sqrt{y} }}}}}}{\bigstar}

For the graph of the equation kindly see the attachment !

Attachments:
Answered by mathdude500
20

\large\underline{\sf{Solution-}}

Given equation of circle is

\rm :\longmapsto\: {x}^{2} +  {(y - 2)}^{2} = 4

can be rewritten as

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  + 4 - 4y = 4

 \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  {(x - y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy \bigg \}}

\rm :\longmapsto\: {x}^{2} +  {y}^{2} - 4y = 0

We know, Polar coordinates is represented as

 \red{\rm :\longmapsto\:(r, \:  \theta )\:}

where,

\rm :\longmapsto\:\boxed{ \tt{ \: r =  \sqrt{ {x}^{2} +  {y}^{2}} \: }}

and

\rm :\longmapsto\:\boxed{ \tt{ \: \theta =  {tan}^{ - 1} \frac{y}{x} \: }}

And, Further more

\red{\rm :\longmapsto\:\boxed{ \tt{ \: x = r \: cos\theta \: }}}

and

\red{\rm :\longmapsto\:\boxed{ \tt{ \: y = r \: sin\theta \: }}}

So, on plug in all these values, we get

\rm :\longmapsto\: {r}^{2} - 4rsin\theta = 0

\rm :\longmapsto\:r(r - 4sin\theta) = 0

\bf\implies \:r = 0 \:  \: or \:  \: r = 4 \: sin\theta

is the required equation of circle in polar coordinates.

Attachments:
Similar questions