Math, asked by theboss4398, 1 year ago

Convolution of x(t+5) with impulse function delta(t-7) is equal to

Answers

Answered by stefangonzalez246
2

Convolution of x(t+5) with impulse function  \begin{equation}\delta\end (t-7) is x(t-2).

Given  

To find the convolution of x(t+5) with impulse function  \begin{equation}\delta\end (t-7).

Convolution has two functions f and g, which results to give third function.

Formula for convolution :

                (f*g) (t) = \begin{equation}\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau\end      

Hence,

               = \begin{equation}\int \delta(\tau-\tau) \times(t-\tau+5) d \tau\end        

Applying,  \begin{equation}\tau\end = 7 in the above equation, we get                

               = x(t-\begin{equation}\tau\end+5)     ( where, \begin{equation}\tau\end = 7 )

               = x(t-7+5)                                

               = x(t-2)

Therefore, convolution of x(t+5) with impulse function  \begin{equation}\delta\end (t-7) is x(t-2).

To learn more...

brainly.in/question/13993884                                                                                      

Similar questions