Math, asked by HeartlessQueen, 1 year ago

coordinate geometry ​

Attachments:

mmariyam25: heyy

Answers

Answered by poorvi200457
3

ans... of your first one

Attachments:
Answered by BrainlyZendhya
5

Coordinate Geometry :-

If three distinct points \sf{A(x_1,y_1),B(x_2,y_2)\:and\:C(x_3,y_3)} are collinear, then we cannot form a triangle, because for such a triangle there will be no altitude (height). Therefore, three points \sf{A(x_1,y_1),B(x_2,y_2)\:and\:C(x_3,y_3)} will be collinear if the area of ΔABC = 0.

(i) Given that,

  • \sf{A(x_1,y_1)\:=\:(4,-1)},
  • \sf{B(x_2,y_2)\:=\:(0,k)\:and\:}
  • \sf{C(x_3,y_3)\:=\:(-2,-3)}

We know that,

\sf⟹{\dfrac{1}{2}}\:[(x_1y_2+x_2y_3+x_3y_1)\:-\:(x_2y_1+x_3y_2+x_1y_3)]\:=\:0

\sf⟹{\dfrac{1}{2}}\:[(4k-0+2)\:-\:(0-2k-12)]\:=\:0

\sf⟹{\dfrac{1}{2}}\:[4k-0+2-0+2k+12]\:=\:0

\sf⟹{\dfrac{1}{2}}\:[6k+14]\:=\:0

\sf⟹{6k+14\:=\:0\:×\:{\dfrac{1}{2}}}

\sf⟹{6k+14\:=\:0}

\sf⟹{6k\:=\:-14}

\sf⟹{k\:=\:{\dfrac{-14}{6}}}

Therefore,\sf{k\:=\:{\dfrac{-14}{6}}}

(ii) Let,

  • \sf{P(x_1,y_1)\:and\:Q(x_2,y_2)}be the points of trisection of line segment.

So, AP = PQ = QB.

  • PB = PQ + QB
  • PB = k + k = 2k
  • Hence, ratio = \sf{\dfrac{AP}{PB}}\:=\:{\dfrac{k}{2k}}\:=\:{\dfrac{1}{2}}

Note : [Refer to the attachment]

Solving,

\sf⟹{x_1\:={\dfrac{1\:×\:(-2)\:+\:2\:×\:4}{1\:+\:2}}}

\sf⟹{x_1\:={\dfrac{-2\:+\:8}{3}}}

\sf⟹{x_1\:={\dfrac{6}{3}}}

\sf⟹{x_1\:=\:2}

\sf⟹{y_1\:={\dfrac{1\:×\:(-3)\:+\:2\:×\:(-1)}{1\:+\:2}}}

\sf⟹{y_1\:={\dfrac{-3\:+\:-2}{3}}}

\sf⟹{y_1\:={\dfrac{-5}{3}}}

\sf{∴\:P(x_1,y_1)\:=\:(2,{\dfrac{-5}{3}})}

\sf⟹{x_2\:={\dfrac{2\:×\:(-2)\:+\:1\:×\:4}{2\:+\:1}}}

\sf⟹{x_2\:={\dfrac{-4\:+\:4}{3}}}

\sf⟹{x_2\:={\dfrac{0}{3}}}

\sf⟹{x_2\:=\:0}

\sf⟹{y_2\:={\dfrac{2\:×\:(-3)\:+\:1\:×\:(-1)}{2\:+\:1}}}

\sf⟹{y_2\:={\dfrac{-6\:-1}{3}}}

\sf⟹{y_2\:={\dfrac{-7}{3}}}

\sf{∴\:Q(x_2,y_2)\:=\:(0,{\dfrac{-7}{3}})}

Therefore, \sf{P(x_1,y_1)\:=\:(2,{\dfrac{-5}{3}})} and \sf{Q(x_2,y_2)\:=\:(0,{\dfrac{-7}{3}})}

Attachments:
Similar questions