COORDINATE GEOMETRY
CLASS 10
________________________
•Please answer the question in the picture.
________________________
THANKS...
Answers
Answer:
- 1 or - 3
Step-by-step explanation:
Distance between P and A = distance between P and ( - 2k, 3 )
Using distance formula:
= > √[(-2-2)² + (k-2)²] = √[(-2k-2)²+(-3-2)²]
= > (-2-2)² + (k-2)² = (-2k-2)²+(-3-2)²
= > (-4)² + (k-2)² = (-2k-2)² + (-5)²
= > 16 + k² + 4 - 4k = 4k² + 4 + 8k + 25
= > k² - 4k + 20 = 4k² + 8k + 29
= > 0 = 4k² - k² + 8k + 4k + 29 - 20 = 0
= > 0 = 3k² + 12k + 9
= > 0 = k² + 4k + 3
= > 0 = k² + 3k + k + 3
= > 0 = k( k + 3 ) + ( k + 3 )
= > ( k + 1 )( k + 3) = 0
= > k = - 1 or - 3
Thus,
AP = √(-2-2)²+(k-2)²
AP = √(-4)²+(-1-2)² or √(-4)²+(-3-2)²
AP = √16+9 or √16+25
AP = √25 = 5 or √41
Solution :
If the point P(2,2) is equidistant from the points A(-2,k) & B(-2k,-3).
As we know that formula of the distance;
PA = PB
- P(2,2)
- A(-2,k)
&
- P(2,2)
- B(-2k-3)
Now;
Squaring both the side;
∴Putting the value of k = -1 in length of AP;
∴Putting the value of k = -3 in length of AP;
Thus;
The length of the AP will be 5 & √41 units .